
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 22, 1125-1143 (2006)

1125

Secure Authentication Protocols Resistant to
Guessing Attacks*

JIA-NING LUO, SHIUHPYNG SHIEH+ AND JI-CHIANG SHEN+

Department of Information and Telecommunication
Ming Chuan University
Taoyuan, 333 Taiwan

E-mail: deer@mcu.edu.tw
+Department of Computer Science
National Chiao Tung University

Hsinchu, 300 Taiwan
E-mail: ssp@csie.nctu.edu.tw

Users are normally authenticated via their passwords in computer systems. Since

people tend to choose passwords that can be easily remembered, the systems are under
the threat of guessing attacks. Many authentication and key distribution protocols have
been proposed to protect user passwords from guessing attacks. However, these proto-
cols either are limited to some specific environments or incur high computation and
communication costs. In the paper, we first specify five common forms of guessing at-
tacks, which are used to determine whether a protocol is vulnerable to those attacks.
Based on these common forms, some guidelines are provided for developing secure pro-
tocols that can be used in both symmetric and asymmetric cryptosystems to defend
against guessing attacks. Finally, we enhance the well-known authentication system Ker-
beros and propose two authentication and key distribution protocols, which are both re-
sistant to guessing attacks.

Keywords: network security, authentication, guessing attack, cryptography, protocol

1. INTRODUCTION

In many computer systems, users are authenticated via passwords which they
choose. Unfortunately, people tend to choose easy-to-remember passwords [16], which
are vulnerable to “guessing attacks.” A malicious attacker can guess such passwords us-
ing the words in a machine-readable dictionary. To reduce the danger of guessing attacks,
authentication mechanisms may use longer passphrases or provide automatic checking of
user passwords against known dictionary lists. However, due to human limitations, peo-
ple tend to use easy-to-remember passwords or variants of words from dictionary. With
the rapid development of semiconductor technology, the time needed for both guessing
and verification decreases, the probability of successful guessing increases. All the above
increase the need for a new scheme to resist guessing attacks.

Guessing attacks can be classified into two categories: on-line and off-line attacks.
In on-line guessing attacks, attackers try to guess user passwords and verify them inter-

Received April 16, 2004; revised August 9, 2004 & February 17, 2005; accepted May 30, 2005.
Communicated by Ja-Ling Wu.
* This work was supported by III and National Science Council of Taiwan, R.O.C., under grant No. NSC

95-2221-E-130-028.

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1126

actively. Generally, servers can detect an attack from continuous authentication failures.
In contrast, in off-line guessing, an attacker eavesdrops on authentication messages and
tries to find a quantity X that is derived from poorly chosen passwords in a known way.
The attacker can use lots of computers to guess passwords, convert them in a known way,
and verify if X is produced. Because such a verification procedure is performed off-line,
the servers cannot detect the attack. Since most security systems can detect on-line
guessing attacks, this paper focuses on off-line guessing attacks.

There are two approaches to solving the problem of guessing attacks. The first one
is to prevent users from using poorly chosen passwords. This is difficult because human’s
memory has its limitation. The other one is to frustrate off-line guessing attacks directly.
That is, to ensure the information available to attackers is sufficiently unpredictable. In
other words, the messages in authentication protocols should only contain enough infor-
mation for the intended recipients to accept them, and there should be insufficient re-
dundancy for attackers to attempt off-line guessing. Many existing authentication proto-
cols, such as Network Encrypted Key Exchange [2], Kerberos [11], the Secure Network
Protocol (SNP) [21], Needham-Schroeder shared key protocol [17], Otway-Rees protocol
[19] and Neuman-Stubblebine protocol [18] are vulnerable to off-line guessing attacks
[26]. Many enhanced authentication protocols have been proposed to resist guessing at-
tacks, including those in [2, 7-10, 13-15, 28]. However, these approaches are either lim-
ited to specific environments or incur high computation and communication costs.

In this paper, we will first discuss common types of guessing attacks, which can de-
termine whether a protocol is vulnerable to guessing attacks. Based on these common
types, we will propose some useful guidelines for developing protocols that are secure
against guessing attacks. Based on these guidelines, we enhance the well-known Kerbe-
ros protocol so that it can resist the guessing attacks and also propose two authentication
and key distribution protocols for the trusted third-party model. The first protocol as-
sumes that all the principals know the public key of the trusted server, and the second
one does not. In the first protocol, we minimize the use of random numbers as well as the
number of encryption operations, and eliminate the requirement of timestamps. In the
second protocol, exponential key exchange is used to negotiate a new encryption key that
is used to distribute the session key.

2. RELATED WORKS

Many authentication protocols to resist off-line guessing attacks have been proposed
[2, 7, 8, 10, 15, 24]. We can classify them into two categories, based on the principals
involved in communication. The protocols in the first category are based on the
two-party model. In this model, two communication principals use a shared common
secret to authenticate each other and negotiate a session key. The EKE (Encrypted Key
Exchange) protocol and its variants [1, 2] belong to this category. The protocols in the
other category are based on the trusted third-party model. In this model, all the principals
trust an authentication server and share their own secrets with the server only. Many
protocols, such as ours and those proposed in [8, 10, 15] belong to this category.

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1127

2.1 Two-Party Model

Suppose that A (Alice) and B (Bob) share a common secret (the password) and in-
tend to derive/exchange a secure session key. In order to prevent guessing attacks from
succeeding, Bellovin and Merritt proposed a concise protocol, called Encrypted Key Ex-
change (EKE) [2]. Based on different underlying cryptosystems, such as RSA [20], El-
Gamal [6], and Diffie-Hellman [5], several variants of this protocol have been developed.
The generic EKE protocol is susceptible to Denning-Sacco attack [4]. This attack was
first illustrated by Denning and Sacco in their critique of Needham and Schroeder’s pa-
per [17]. In this attack, an attacker somehow obtains one of the session keys distributed
in one run of the EKE protocol. Armed with this knowledge, the attacker can mount a
guessing attack on the password. There is a variant of EKE, called Exponential Key Ex-
change EKE, which is resistant to the Denning-Sacco Attack. However, EKE has the
limitation that the two participators must share a common secret before communication
begins. This limitation confines use of the EKE protocol to be used in specific environ-
ments.

2.2 Trusted Third-Party Model

Gong et al. proposed a protocol [8] of the trusted third-party model type, the GLNS
protocol, which provides protection against guessing attacks. Due to the introduction of
nonces and a confounder, attackers cannot derive the message contents encrypted by the
password because the messages are protected by nonces and a random session key. Gong
proposed an enhancement [7] of the GLNS protocol, which reduces the number of mes-
sage transmissions and does not require timestamps. Keung and Siu [10] proposed an-
other protocol which resists both replay and off-line password guessing attacks. Their
protocol focuses on enlarging the search space to provide better security and minimizing
the amount of encryption. Kwon, Kang, and Song [15] proposed another protocol for
mutual authentication and key distribution. Later, Yeh, Sun, and Hwang [25] enhanced
the three-party EKE protocol [23] to resist both undetectable on-line and off-line pass-
word guessing attacks.

Within these protocols, many random numbers and cryptographic operations are
performed to prevent guessing attacks. It is assumed that all the principals know the pub-
lic key of the trusted server before communication begins. In some situations, however, it
may be difficult for users to get the public key of the trusted server (e.g., in mobile envi-
ronments). In section 5, we will present a more efficient authentication protocol that does
not require that the communication principals know the public key of the trusted server.

3. COMMON FORMS OF GUESSING ATTACKS

In this section, we will discuss five common types of guessing attacks: simple
guessing attacks, cascade guessing attacks, insider guessing attacks, replay guessing
attacks, and partition attacks. These common types are helpful for diagnosing whether a
protocol is vulnerable to guessing attacks. Then, we will propose some guidelines for

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1128

developing protocols that are secure against guessing attacks. For convenience, the nota-
tions shown in Table 1 will be used to discuss the protocols.

Table 1. Notations.

A System principal A
B System principal B
S Trusted Server

A → B : m A sends a message m to B
m, n Concatenation of message m and n

Ka, Kb Passwords of A and B
K Session key between A and B
Ks Public key of the Trusted Server

{m}k Encrypt m using key k
[m]k Decrypt m using key k
⊕ Bit-wise exclusive-or operation (XOR)

3.1 Simple Guessing Attacks

If authentication protocols containing predicable information are encrypted with
poorly chosen passwords, they will be vulnerable to guessing attacks. Guessing attacks
of this form are called simple guessing attacks. Many existing protocols, such as SNP
(Secure Network Protocol) [21], and the Needham-Schroeder secret key protocol [17],
are vulnerable to simple guessing attacks. The SNP protocol proposed by Shieh and Yang
is a nonce-based authentication and key distribution protocol for open network systems.
The SNP protocol is shown in Fig. 1.

1. C → S : {C, S, crand}Kc
2. S → AS : S, {C, S, srand, {C, S, crand}Kc}Ks
3. AS → S : {AS, Kss, (srand + 1), {Kss, (crand + 1)}Kc}Ks
4. S → C : {Kss, (crand + 1)}Kc

Fig. 1. SNP protocol.

In the SNP protocol, AS, C, and S represent the authentication server, client, and

server, respectively. Crand and srand are random numbers generated by the client and
server, respectively. Ks is the shared secret between the server S and authentication server
AS. Kc is the shared secret between the client C and AS. Kss is the session key used by C
and S to communicate with each other. Using the keys from a series of guesses against
the password Kc, the attacker can iteratively decrypt the first message to derive a set of
names of for guessing C. If one of the derived names is identical to C, he has made a
correct guess. The simple guessing attack is described as follows:

• The attacker captures all the messages of one run of the SNP protocol.
• The following steps are performed iteratively until all possible candidates of password

Kc are tested:

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1129

1. Pick a candidate .cK

2. Derive plaintext { , , }C S crand by computing [{ , , }]
c c

K KC S crand from the first
message {C, S, crand}Kc captured.

3. Compare C with C.

A match in the last step indicates a correct guess of the password Kc.

3.2 Cascade Guessing Attacks

To prevent simple guessing attacks, a message encrypted with a password should be
made sufficiently unpredictable to attackers. An attacker may be able to guess the mes-
sage encrypted with a poorly chosen password, but he will not be able to directly verify
whether his guess is correct if the message content is unpredictable. If the attacker can
find any relationship among all parts of the authentication message, he can successfully
verify his guess based on that relationship. We present in Fig. 2 a typical trusted
third-party and challenge-response protocol to demonstrate this type of guessing attacks
called a cascade guessing attack. In the protocol shown in Fig. 2, a trusted host S serves
as a mediator between the two clients A and B to achieve mutual authentication.

1. A → B : {A, B, na}Ks, ra
2. B → S : {A, B, na}Ks, {B, A, nb}Ks
3. S → B : {na, K}Ka, {nb, K}Kb
4. B → A : {na, K}Ka, {ra + 1, rb}K
5. A → B : {rb + 1}K

Fig. 2. Demonstration protocol 1.

In this protocol, na, nb, ra, and rb are random numbers generated by the originator

of the message in which they first appeared. The key Ks is the public key of the server S,
and the keys Ka and Kb shared with S are the secret keys of clients A and B, respectively.
The session key K used by A and B is generated by S. In message 4, we can get a possible
value of ra + 1 by decrypting the second part ({ra + 1, rb}K) with the session key K
which is derived from our guess in message 3. Since ra appears in message 1 in plaintext,
we can successfully verify the relationship between ra and the derived ra + 1. The cas-
cade guessing attack is as follows:

• The attacker captures all the messages of one run of the protocol.
• The following steps are performed iteratively until all possible candidates of password

Ka are tested:

1. Pick a candidate .aK

2. Derive plaintext { , }na K by computing [{ , }]
a a

K Kna K from {na, K}Ka, which is the
first part of captured message 1.

3. Derive plaintext { 1, }ra rb+ by computing [{ 1, }]K Kra rb+ from {ra + 1, rb}K,
which is the second part of captured message 4.

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1130

4. Compare 1ra + with ra + 1.

A match in the last step indicates a correct guess of the password Ka.

3.3 Insider Guessing Attacks

According to demonstration protocol 1, it is vulnerable to cascade guessing attacks
if the session keys are directly encrypted with poorly chosen passwords. A revision of
demonstration protocol 1 is presented in Fig. 3. It is resistant to cascade guessing attacks.

1. A → B : {A, B, na1, na2}Ks, ra
2. B → S : {A, B, na1, na2}Ks, {B, A, nb1, nb2}Ks
3. S → B : {na1, K ⊕ na2}Ka, {nb1, K ⊕ nb2}Kb
4. B → A : {na1, K ⊕ na2}Ka, {ra + 1, rb}K
5. A → B : {rb + 1}K

Fig. 3. Demonstration protocol 2.

Unlike protocol 1, a random number na2 is included in the authentication messages.

The random number na2 prevents the attacker from deriving the session key K because
he cannot get the exact value of na2 to resolve K from K ⊕ na2 and, therefore, is unable
to verify whether his guess is corrects. Therefore, protocol 2 can resist cascade guessing
attacks.

Although we assume that the communicating principals, A and B, trust each other,
each principal might try to guess the other’s password with the aid of the residue of a
successful transaction. This is called the insider guessing attack. To show that protocol 2
is vulnerable to insider guessing attacks, we assume that principal B is malicious and try
to guess principal A’s password. In protocol 2, B can decrypt the second part of message
3 and perform an exclusive-or (XOR) operation on K ⊕ nb2 with nb2 to derive the ses-
sion key K. Then he can make a guess about Ka and decrypt the first part of message 3 to
get the guessing value of na1 and K ⊕ na2. After XORing K ⊕ na2 with K to obtain the
guessing value of na2, B can try to construct the first part of message 2 with na1, na2
and the public key Ks of the server. If the constructed message is identical to the real one,
B can correctly guess Ka and succeed to performing the insider guessing attack. The in-
sider guessing attack is shown as follows:

• The malicious principal B records all the messages of one run of the protocol.
• The following steps are performed iteratively until all possible candidates of password

Ka are tested:

1. Pick a candidate .aK

2. Derive plaintext { 1, 2}na K na⊕ by computing [{ 1, 2}]
a a

K Kna K na⊕ from {na1, K
⊕ na2}Ka which is the first part of received message 3.

3. Compute 2 2 .na K na K= ⊕ ⊕

4. Construct { , , 1, 2} .
sKA B na na

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1131

5. Compare { , , 1, 2}
sKA B na na with { , , 1, 2} ,

sKA B na na which is the first part of re-
ceived message 2.

A match in the last step indicates a correct guess of the password Ka.

3.4 Replay Guessing Attacks

Insider guessing attacks can be prevented by introducing a sufficiently large random
number, called a confounder, into authentication messages that will be encrypted with the
public key of the server. The purpose of the confounder is to prevent an attacker from
constructing authentication messages. The value of the confounder can be ignored by the
legitimate recipient of the message in which it appears. A revision of protocol 2 with the
cofounder na3 is shown in Fig. 4. Demonstration protocol 3 is resistant to insider guess-
ing attacks because a malicious principal B cannot construct the first part of message 2 to
verify that his guess is correct without knowing the confounder na3.

1. A → B : {A, B, na1, na2, na3}Ks, ra
2. B → S : {A, B, na1, na2, na3}Ks, {B, A, nb1, nb2, nb3}Ks
3. S → B : {na1, K ⊕ na2}Ka, {nb1, K ⊕ nb2}Kb
4. B → A : {na1, K ⊕ na2}Ka, {ra + 1, rb}K
5. A → B : {rb + 1}K

Fig. 4. Demonstration protocol 3.

In this protocol, the server S cannot determine whether the received request message

(message 2) is fresh. An attacker who has captured the old messages of one run of the
protocol can masquerade as principal B by re-sending the old message 2 to the server.
The server S decrypts message 2, selects a new session key K and then replies with a new
message 3. The only difference between the old message 3 and the new one is the session
key K, so the attacker can mount a guessing attack, in this case, a replay guessing attack.
The attacker can guess Ka (or Kb) by decrypting the first (or second) part of both the old
message 3 and the new one, and comparing the random number na1 (or nb1) in the two
messages. Consequently, the attacker can successfully verify that his guess is correct and
perform the replay guessing attack. The reply guessing attack is shown as follows:

• The attacker captures all the messages of one run of the protocol.
• The attacker masquerades as B and replays the old message 2,

{A, B, na1, na2, na3}Ks, {B, A, nb1, nb2, nb3}Ks to get a new reply message 3: {na1, K
⊕ na2}′Ka, {nb1, K ⊕ nb2}′Kb.

• The following steps are performed iteratively until all possible candidates of password
Ka have been tested:

1. Pick a candidate .aK

2. Derive plaintext { 1, 2}na K na⊕ by computing [{ 1, 2}]
a a

K Kna K na⊕ from {na1, K
⊕ na2}Ka, which is the first part of the captured old message 3.

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1132

3. Derive plaintext { 1 , 2 }na K na′ ′⊕ by computing [{ 1, 2}]
a a

K Kna K na ′⊕ from {na1,
K ⊕ na2}′Ka, which is the first part of the received new message 3.

4. Compare 1na with 1 .na ′

A match in the last step indicates a correct guess of the password Ka.

3.5 Partition Attacks

To prevent someone from using a secret key to encrypt future session keys, Li Gong
proposed the “secret public key protocol,” which uses two randomly generated public
key pairs k1 and k2 to encrypt the session key K [7]. The secret public key protocol is
shown in Fig. 5.

1. A → B : na, {k1}Ka
2. B → S : na, {k1}Ka, nb, {k2}kb
3. S → B : {A, B, cs1, K, {na}ka}k1

, {B, A, cs2, K, {nb}kb}k2

4. B → A : {A, B, cs1, K, {na}ka}k1, {na}K, nb
5. A → B : {nb}K

Fig. 5. Secret public key protocol.

In this protocol, the randomly generated public key pair k1 and k2 is encrypted by

means of the two communicating principals’ passwords Ka and Kb. The server, which
knows passwords Ka and Kb, can derive the correct k1 and k2. In the third message, S uses
these public keys to encrypt a new session key K and sends the encrypted message back
to the communicating principals, A and B. Finally A and B use their private keys corre-
sponding to k1 and k2 to derive the session key K from the messages {A, B, cs1, K,
{na}ka}k1

 and {B, A, cs2, K, {nb}kb}k2
.

This protocol cannot resist the partition attack proposed by Bellovin and Merritt [1].
Before describing the partition attack, we will first look at the key generation part of the
well-known RSA algorithm:

1. Generate two large random primes, p and q, of approximately equal size such that their

product n = pq is of the required bit length m, e.g., m = 1024 bits.
2. Compute n = pq and φ(n) = (p − 1)(q − 1).
3. Choose the public exponent e, where gcd(φ(n), e) = 1 and 1 < e < φ(n).
4. Compute the secret exponent d ≡ e-1 mod φ(n).

Fig. 6. RSA key generation algorithm.

In the key generation algorithm, the public key is (e, n), and the private key is (d, n).

The public component e is always odd because φ(n) is even and gcd(φ(n), e) = 1. Fur-
thermore, the value of e is less than φ(n). According to these properties, an attacker who
has captured several old messages can choose one candidate password Ka′ to verify that

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1133

his guess is correct by checking the range of the derived k1′. At each round of verification,
if k1′ is even or greater than n, the attacker knows his guess is wrong and picks another
candidate to continue the attack. Since each verification will partition the remaining can-
didate password space into two parts, the decrease in the key space is logarithmic. This
attack will succeed if Ka is a poorly chosen password and is called as the partition attack.

4. GUIDELINES FOR DEVELOPING PROTOCOLS FOR DEFENDING
AGAINST GUESSING ATTACKS

In section 3, we introduced some protocols for defending against off-line guessing
attacks and specified five common types of such attacks. Having analyzed these types,
we will propose some guidelines for developing protocols that are resistant to guessing
attacks. First, some generic guidelines for reducing the threat of guessing attacks will be
given. Second, we will clarify the properties of guessing attacks in symmetric and asym-
metric cryptosystems, and propose respective guidelines.

4.1 Guidelines

Problems with guessing attacks result from poorly chosen passwords. In many cases,
we cannot avoid using poorly chosen passwords as encryption keys. This gives attackers
opportunities to guess the passwords. Preventing attackers from making guesses is diffi-
cult, but preventing verification is possible if we encrypt the data carefully with poorly
chosen passwords. Below, we give the first guideline.

Guideline 1 Do not encrypt predictable texts with poorly chosen passwords directly.

If we do not encrypt predictable texts with poorly chosen passwords, the attacker
cannot verify his guess directly. In other words, messages encrypted with poorly chosen
passwords should be unintelligible to attackers and meaningful to the intended recipients.

In authentication protocols, the data encryption keys, such as session keys, are gen-
erally well-chosen random numbers, which can resist guessing attacks. However, the
protocols remain vulnerable to cascade guessing attacks if the encryption keys are not
used properly in the authentication messages. Now, we will give a guideline concerning
encryption keys.

Guideline 2 Do not encrypt keys, such as session keys, with poorly chosen passwords
directly.

In section 3, we gave an example which demonstrates the vulnerability of encrypt-
ing session keys with poorly chosen passwords directly. In the example, the attacker can
decrypt the message with his guessing key to get a possible session key, and verify
whether the derived key is equal to the real by decryption of the following messages,
since the session key was used to encrypt the communication data.

We know that if poorly chosen passwords are used as encryption keys, the protocols,
will be vulnerable to guessing attacks. This vulnerability to guessing attacks can be con-

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1134

tagious, because a poorly chosen password will compromise an otherwise well-chosen
private key, since an attacker can mount many other attacks on the protocol based on the
compromised private key. Therefore, we will give another guideline concerning poorly
chosen passwords.

Guideline 3 Avoid using poorly chosen passwords as encryption keys if it is not nec-
essary to do so.

If possible, we should try not to use poorly chosen passwords as encryption keys
because of the potential risk. We can use other elements, such as random numbers or
hash functions of something, instead. Decreasing the probability of using poorly chosen
passwords as encryption keys will improve the security of protocols.

To avoid using poorly chosen passwords as encryption keys, we can use another
method for constructing the encryption keys:

EncryptionKey = password ⊕ seed.

The password is chosen by the user, and the seed is a random number stored in the

client’s computer. During system setup, the encryption key is shared by the user and is a
random number.

4.2 Guidelines for Public Key Systems

Many protocols have been proposed to authenticate each other and negotiate a ses-
sion key through by using both public key and secret key systems. In this kind of proto-
col, each principal shares a secret (or password) with the authentication server. For ex-
ample, an initial request may be as follows:

1. A → S : {A, B, Ka}Ks.

An attacker cannot decrypt the request message directly, but he may try to construct

an initial request message and compare it with the eavesdropped one. Initially, the at-
tacker knows the public key Ks of the server and the principal names A and B. He then
guesses a possible Ka′ and constructs a request message. If the constructed message is
identical to the captured one, he got the correct Ka. In fact, this attack is a simple type of
guessing attack. This kind of attack can be prevented by inserting a confounder like the
following one into the public key encrypted message:

1. A → S : {A, B, na, Ka}Ks.

Since the attacker does not know na, he is unable to mount a guessing attack on the

message. Next, we offer a guideline for public key systems.

Guideline 4 Inhibit reconstruction of the original message by inserting confounders
into the public key encrypted message.

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1135

After the client sends an initial request message to the authentication server, the
server usually sends a reply in which the session key may be included. It should be noted
that if the initial request message does not contain a timestamp, then the message can be
replayed. Since the server cannot determine the message’s freshness, a new response is
always replied to the attacker. If the server’s response message is encrypted with poorly
chosen passwords, it may be vulnerable to replay guessing attacks. Next, we will give
another guideline for preventing this kind of guessing attacks.

Guideline 5 A server’s reply to a client’s request should not include the components
taken from the request message if the server’s reply is encrypted with passwords.

4.3 Guidelines for Secret Key Systems

In an authenticated protocol based on secret key systems, two communication prin-
cipals A and B share one secret to authenticate each other. If A and B want to mutually
authenticate each other through the only secret, they must confirm some relationship
such as challenge and response through the secret. Since the attacker can guess the secret
if it is poorly chosen, the protocol messages are unshaded for him if we assume that his
guess is correct. Guessing attacks on secret key systems can be prevented by introducing
authenticators into encrypted messages. An authenticator is a secret shared by the two
parties who wish to communicate with each other. It can be used to help receivers au-
thenticate their messages and can prevent an attacker from verifying that his guess is
correct. For example, user A may securely send a message M to server S as follows:

1. A → S : {Au, M}Ka .

Here, Au is the authenticator, and Ka is the poorly chosen password. Server S can de-
rive Au and M by decrypting the message received with Ka, and can verify whether Au is
identical to the one he has or not. If it is, then the server S will believes that the message
M was really sent by user A. Though the authenticator Au could be a poorly secret chosen
because it is memorable, guessing attacks will not succeed. This is because an attacker
cannot verify that his guess is correct by only using this encrypted message without
knowledge of Au and M.

5. PROPOSED SOLUTIONS

In section 4, we summarized several guidelines for developing secure protocols for
defending against guessing attacks. Based on these guidelines, we will propose three
protocols that can resist guessing attacks. The first one is an enhancement of the Kerbe-
ros protocol. The other two protocols are new and are designed to provide better security
and efficiency.

5.1 Enhanced Kerberos Protocol

The Kerberos protocol, as shown in Fig. 7 is a trusted third-party authentication pro-
tocol based on secret key system. The Kerberos protocol versions 4 and 5 were described

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1136

1. c → AS : c, TGS
2. AS → c : {Kc,tgs, {Tc,tgs}Ktgs}Kc
3. c → TGS : {Ac}Kc,tgs, {Tc,tgs}Ktgs
4. TGS → c : {Kc,s, {Tc,s}Ks}Kc,tgs
5. c → s : {Ac}Kc,s, {Tc,s}Ks

Fig. 7. Kerberos authentication protocol.

in [22] and [11, 12], respectively. Both of them are vulnerable to cascade guessing at-
tacks.

If the user key Kc used in the Kerberos protocol is a poorly chosen password, an at-
tacker can mount a cascade guessing attack on the protocol: After guessing Kc, an at-
tacker can decrypt message 2 with the guessed Kc to get the Kc,tgs. Consequently, he can
use the derived Kc,tgs to decrypt the first part of message 3 to get the authenticator Ac. The
Ac contains recognizable data such as the client’s name, network address and the time-
stamp, the attacker can determine whether his guess is successful. To solve this problem,
we negotiate a new shared secret key through the public key distribution system. The
new shared secret key instead of the poorly chosen password Kc is then used to encrypt
message 2, the Kerberos protocol hence is resistant to guessing attacks. The enhanced
Kerberos protocol is presented in Fig. 8.

1. C → AS : C, TGS, {e + jn}Ke, n
2. AS → C : {Kc,tgs, {Tc,tgs}Ktgs}Kc,as, {Kc,as}Ec
3. C → TGS : {Ac}Kc,tgs, {Tc,tgs}Ktgs
4. TGS → C : {Kc,s, {Ta,s}Ks}Kc,tgs
5. C → S : {Ac}Kc,s, {Tc,s}Ks

Fig. 8. Enhanced Kerberos authentication protocol.

The difference between the original protocol and our enhanced protocol is in the

first two messages. In the enhanced Kerberos protocol, C randomly generates an RSA
key pair, Ec = (e, n) and Dc = (d, n), where e is the public key component, d is the corre-
spondent private key and n is the modulous.

When the protocol starts, C encrypts the public key by using his password Kc, and
sends it to AS. AS uses it to encrypt further messages that only A can decrypt because
only he knows the private key. To prevent the partition attack described in section 3.5
from suceeding, we do not encrypt the public key component e by using the password Kc
directly. Assume the required bit length of the symmetric cipher is m, where 2m > n. Let

x =
2m

n

; we choose a random number j in the range [0, x − 1] and send {e + jn}Kc, n to

AS. AS can obtain e by calculating (e + jn) mod n = e.
Upon receipt of message 1, AS decrypts {e + jn}Kc to obtain the public key compo-

nent e. AS generates a shared secret key Kc,as and encrypts it with Ec using asymmetric
encryption algorithms. In the meantime, the original message 2 is encrypted with Kc,as
instead of Kc. Now, only C can decrypt the second part of message 2 with the generated

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1137

private key (d, n) and get Kc,as to continue the sequential procedure, which is same as in
the original Kerberos protocol. Therefore, this protocol is secure against off-line guessing
attacks, since no poorly chosen password is used to encrypt predictable information.

5.2 A Trusted Third-Party Protocol for Public Key Systems

Based on our guidelines, we will propose an authentication and key distribution pro-
tocol in this subsection. It is assumed that all the participators know the public key of the
trusted server. The proposed protocol is shown in Fig. 9.

1. A → B : {A, na, {A, B, ra}Ka}Ks
2. B → S : {A, na, {A, B, ra}Ka}Ks, {B, nb, {A, B, rb}Kb}Ks
3. S → B : {A, B, K ⊕ h(na ⊕ Ka)}ra, {B, A, K ⊕ h(nb ⊕ Kb)}rb
4. B → A : {A, B, K ⊕ h(na ⊕ Ka)}ra, {h(rb)}K
5. A → B : {h(rb) + 1}K

Fig. 9. Proposed authentication protocol for public key systems.

In the proposed protocol, S is the trusted authentication server, and the public key Ks

of S is known by each principal in the system. Principals A and B share their secrets, Ka
and Kb, with S. Four random numbers (na, nb, ra, rb) are generated by A and B, respec-
tively, in the protocol. ra and rb are used as randomly chosen encryption keys, and na
and nb are used for challenge-response. After the authentication procedure is completed,
A and B negotiate a session key K to communicate with each other securely.

In this protocol, the encryptor ra is protected by the user password Ka in message 1.
The session key K can only be derived from K ⊕ h(na ⊕ Ka) or K ⊕ h(nb ⊕ Kb). Even if
an attacker can guess the encryptor ra, he cannot get the session key K or user password
Ka, because he does not know both na and Ka, and thus, cannot derive K ⊕ h(na ⊕ Ka). If
the attacker picks one candidate Ka′ in message 1, he cannot verify that his guess is cor-
rect. For the sake of brevity, we will not describe the protocol in detail.

Simple guessing and cascade guessing attacks will not be successful because no
poorly chosen password is used as an encryption key. Though message 2 may be re-
played because S cannot determine its freshness, no additional information will be help-
ful for performing a replay guessing attack based on S’s reply. Knowing the session key
is not helpful for mounting a guessing attack on user passwords in the protocol, so in-
sider guessing attacks also will not be successful. Compared with other similar work [7,
8], we minimize the use of random numbers as well as the total number of encryption
operations, and we eliminate the need for a timestamp.

5.3 A Trusted Third-Party Protocol without a Public Key System

In some environments, it is difficult to assume that all users know the public key of
the trusted third-party. In Fig. 10, another trusted third-party key distribution protocol is
shown in which the server’s public key is not needed. The function h(x) is a one-way
hash function.

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1138

1. A → B : A, (αXa mod β) ⊕ h(Ka ⊕ seeda), ra
2. B → S : A, B, (αXa mod β) ⊕ h(Ka ⊕ seeda), (αXb mod β) ⊕ h(Kb ⊕ seedb)
3. S → B : (αYa mod β) ⊕ h(Ka ⊕ seeda), {A, B, K}Ka,s, (αYb mod β) ⊕ h(Kb ⊕ seedb), {B, A, K}Kb,s
4. B → A : (αYa mod β) ⊕ h(Ka ⊕ seeda), {A, B, K}Ka,s, {ra, rb}K
5. A → B : {rb + 1}K

Fig. 10. Proposed authentication protocol without a public key system.

Principals A and B share their secrets, Ka ⊕ seeda and Kb ⊕ seedb, with S. Before the

protocol starts, the two large prime numbers α and β are generated for long-term use. Xa,
Xb, Ya and Yb are random numbers used for Diffie-Hellman exponential key exchange [5]:

Ka,s = ((αX

a mod β)Y
a) mod β = αX

a
Y

a mod β,

Kb,s = ((αX
b mod β)Y

b) mod β = αX
b
Y

b mod β.

The generated encryption keys (Ka,s and Kb,s) are only used to protect the session

key K. Though an attacker can guess Ka ⊕ seeda (or Kb ⊕ seedb) and extract both αX
a mod

β and αY
a mod β using his guessed Ka (or Kb), he cannot calculate Ka,s (or Kb,s) and find a

relationship that he can use to verify that his guess is correct. User passwords are not
used in the protocol except to protect the exponential message, which means that the at-
tacker has no other opportunity to perform an off-line guessing attack. Moreover, this
protocol is not vulnerable to man-in-the-middle attacks, since exponential messages,
such as αX

a mod β, are protected by means of user passwords.

6. DISCUSSION

In this section, we will describe some common attacks and explain why our pro-
posed protocols can resist these attacks. We will also make a comparison between our
protocols and other similar protocols. Moreover, we will discuss implementation issues.

6.1 Security Analysis

Trivial Attacks In general, there are two types of trivial attacks: replay attacks and
substitution attacks. A replay attack is an attack in which an intruder successfully imper-
sonates somebody else by replaying one or more old messages collected previously. A
substitution attack is an attack in which an intruder successfully impersonates somebody
else by substituting one or more messages during the authentication phase. Many ad-
vanced attacks are based on these two types of attacks. Since all of our protocols are
nonce-based instead of timestamp-based protocols, substitution and replay attacks based
on the use of old authentication messages can be easily defended against.

Oracle Session Attacks An oracle session attack was described by Bird [3]. In such an
attack, an intruder starts two separate authentication sessions with two different service
providers, such that he is able to use the messages in one authentication session to suc-
cessfully impersonate a particular user in the other session. This kind of attack can be

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1139

effectively blocked if the encrypted messages involved in each run of the protocol are
different from or logically linked with one another. In our proposed authentication pro-
tocols, the session key is encrypted with a pre-negotiated random key. Without knowing
the pre-negotiated random key, the intruder cannot attack the protocols successfully.

Comparisons In this section, we will compare our protocols with other similar proto-
cols, such as the GLNS compact protocol [8], GLNS nonce protocol [8], Gong’s optimal
protocol [7], Keung-Siu’s protocol [10], and Kwon-Kang-Song’s protocol [15]. We will
show that our proposed protocol with a public key system has the advantage of employ-
ing fewer random numbers, and that our protocol without a public key system has the
advantage of not needing the authentication server’s public key. A comparison is shown
in Table 2.

Table 2. Comparison of various authentication protocols.

 # of messages
Needs

timestamp
Needs server’s

public key
of random

numbers
of exponen-

tiation
GLNS compact
protocol

5 Yes Yes 8 2

GLNS nonce
protocol

7 No Yes 8 2

GLNS optimal
protocol

5 No Yes 10 2

Keung-Siu
Protocol

5 No Yes 6 2

Kwon-Kang-Song
protocol

5 No Yes 6 2

Proposed protocol
with a public key
system

5 No Yes 4 2

Proposed protocol
without a pubic
key system

5 No No 6 4

6.2 Analysis of Protocol Implementation

In the above sections, we considered cryptographic primitives as abstract operations.
In this section, we will consider two issues related to protocol implementation: key gen-
eration and message padding.

6.2.1 Cryptographic algorithms and key generation

Most authentication protocols use cryptography algorithms to encrypt communica-
tion messages. For example, Kerberos is based on secret key technology, and all Kerbe-
ros V4 implementations use DES.

In some implementations, a password string may not be used to encrypt message
contents directly in a secret key system. A key generation function converts the password

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1140

string into an encryption key. For example, in the well-known encryption library
“SSLeay” [27], the DES key-generation function is des_string_to_key(). If a key genera-
tion function accepts a fixed-length input, then guessing attacks may be successful, not
because the password is used by a human, but because the space for likely candidates is
small enough to make brute-force search feasible. As another example, in the traditional
UNIX system, the passwd() function accepts only an eight-byte input. A password
“12345678qazwsxytrfg” might be considered to be secure, but in fact it will be truncated,
resulting in the easily broken password “12345678.” In other cases, implementations
may use hash algorithms (for example, MD5) as key-generation functions to permit
longer passphrases and reduce the above risk.

Due to their limited memory capacity, people are tempted to use easy-to-remember
passwords which are used to generate keys. In these cases, the key spaces of likely can-
didates may be small enough to make brute-force search feasible. Therefore, mechanisms
for blocking guessing attacks are still needed.

Now we will consider public key systems. In many public key implementations, pri-
vate key files are protected by passwords. If an intruder can get the private key file, he
will only need to guess the password rather than solve a factoring problem. Thus, the
robustness of such an implementation is based on a user-chosen password, not on the
lengths of prime numbers.

6.2.2 Message padding and checksum

In block-cipher systems, messages are encrypted block by block. The block-length
is fixed, and we assume that it is n bytes long. If the length of a plain-text message is i
byte(s) (which is less than n), then an extra padding-string is appended to the plain-text
message before encryption is performed. The padding-string may be filled with zeros,
fixed formats, or random values.

Password guessing is easier if a padding algorithm is used in the implementation.
Consider the last message of demonstration protocol 1, as shown in Fig. 2. Assume that
the variable rb + 1 requires storing four bytes. If we use DES to encrypt this message, we
will need to append four extra padding bytes, such as “01 02 03 04,” to the message be-
cause the plain-text length of a DES block cipher is eight bytes. An attacker can choose a

candidate password K to decrypt the captured message and compare the end of the
plaintext with the padding form.

Moreover, if a checksum is used before encryption is performed in the implementa-
tion, the situation is similar to the padding problem. An attacker can verify that his guess
is correct by calculating a new checksum value and comparing it with the old one.

For the reasons given above, checksum should not be used before encryption in the
implementation, and the padding string should be filled with random numbers.

7. CONCLUSION

In this paper, we have discussed in detail the problem of guessing attacks. First, we
explored five types of the guessing attacks: simple guessing attacks, cascade guessing
attacks, insider guessing attacks, replay guessing attacks and partition attacks. These

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1141

forms are very useful for determining whether a protocol is vulnerable to the guessing
attacks. Then, we proposed some guidelines for developing protocols that are secure
against guessing attacks. Finally, we proposed an enhanced version of the Kerberos pro-
tocol and two new authentication protocols, all of which can resist guessing attacks.

REFERENCES

1. S. Bellovin and M. Merritt, “Encrypted key exchange: password-based protocols
secure against dictionary attacks,” in Proceedings of the IEEE Symposium on Re-
search in Security and Privacy, 1992, pp. 72-84.

2. S. Bellovin and M. Merritt, “Augmented encrypted key exchange: a password-based
protocol secure against dictionary attacks and password file compromise,” in Pro-
ceedings of the 1st ACM Conference on Computer and Communication Security,
1993, pp. 244-250.

3. R. Bird, I. Gopal, A. Herzberg, P. A. Janson, S. Kutten, R. Molva, and M. Yung,
“Systematic design of a family of attack-resistant authentication protocols,” IEEE
Journal on Selected Areas in Communications, Vol. 11, 1993, pp. 679-693.

4. D. E. Denning and G. M. Sacco, “Timestamps in key distribution systems,” Commu-
nications of the ACM, Vol. 24, 1981, pp. 533-536.

5. W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE Transactions
on Information Theory, Vol. IT-11, 1976, pp. 644-654.

6. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Transactions on Information Theory, Vol. 31, 1985, pp. 469-472.

7. L. Gong, “Optimal authentication protocols resistant to password guessing attacks,”
in Proceedings of the 8th IEEE Computer Security Foundation Workshop, 1995, pp.
24-29.

8. L. Gong, M. Lomas, R. Needham, and J. Saltzer, “Protecting poorly chosen secrets
from guessing attacks,” IEEE Journal on Selected Areas in Communications, Vol. 11,
1993, pp. 648-656.

9. B. T. Hsieh, H. M. Sun, and T. Hwang, “Cryptanalysis of enhancement for simple
authentication key agreement algorithm,” Electronic Letters, Vol. 38, 2002, pp.
20-21.

10. S. Keung and K. Siu, “Efficient protocols secure against guessing and replay at-
tacks,” in Proceedings of the 4th International Conference on Computer Communi-
cations and Networks, 1995, pp. 105-112.

11. J. T. Kohl, B. C. Neumann, and T. Ts’o, “The evolution of the Kerberos authentica-
tion system,” Distributed Open Systems, 1994, pp. 78-94.

12. J. T. Kohl, “The evolution of the Kerberos authentication service,” in Proceedings of
the EurOpen Conference, 1991, pp. 295-313.

13. T. Kwon, M. Kang, S. Jung, and J. Song, “An improvement of the password-based
authentication protocol (K1P) on security against replay attacks,” IEICE Transac-
tions on Communications, Vol. E82-B, 1999, pp. 991-997.

14. T. Kwon, M. Kang, S. Jung, and J. Song, “Authentication key exchange protocols
resistant to password guessing attacks,” in Proceedings of the IEE Communication,
Vol. 145, 1998, pp. 304-308.

JIA-NING LUO, SHIUHPYNG SHIEH AND JI-CHIANG SHEN

1142

15. T. Kwon, M. Kang, and J. Song, “An adaptable and reliable authentication protocol
for communication networks,” in Proceedings of the IEEE INFOCOM, 1997, pp.
737-744.

16. R. Morris and K. Thompson, “Password security: a case study,” Communications of
the ACM, Vol. 22, 1979, pp. 594-597.

17. R. Needham and M. Schroeder, “Using encryption for authentication in large net-
works of computers,” Communications of the ACM, Vol. 21, 1978, pp. 993-999.

18. B. C. Neuman and S. G. Stubblebine, “A note on the use of timestamps as nonces,”
ACM SIGOPS Operating Systems Review, Vol. 27, 1993, pp. 10-14.

19. D. Otway and O. Rees, “Efficient and timely mutual authentication,” ACM SIGOPS
Operating System Review, Vol. 21, 1978, pp. 8-10.

20. R. L. Rivest, A. Shamir, and L. Adleman, “A method of obtaining digital signatures
and public-key cryptosystems,” Communications of the ACM, Vol. 21, 1978, pp.
120-126.

21. S. P. Shieh and W. H. Yang, “An authentication and key distribution system for open
network systems,” ACM SIGOPS Operating Systems Review, 1996, pp. 32-41.

22. J. G. Steiner, B. C. Neuman, and J. I. Schiller, “Kerberos: an authentication service
for open network systems,” in Proceedings of the Winter USENIX Conference, 1988,
pp. 191-201.

23. M. Steiner, G. Tsudik, and M. Waidner, “Refinement and extension of encrypted key
exchange,” ACM SIGOPS Operating Systems Review, Vol. 29, 1995, pp. 22-30.

24. G. Tsudik and E. Van Herreweghen, “Some remarks on protecting weak keys and
poorly-chosen secrets from guessing attacks,” in Proceedings of the 12th IEEE Sym-
posium on Reliable Distributed Systems, 1993, pp. 136-141.

25. H. T. Yeh, H. M. Sun, and T. N. Hwang, “Efficient three-party authentication and key
agreement protocols resistant to password guessing attack,” Journal of Information
Science and Engineering, Vol. 19, 2003, pp. 1059-1070.

26. H. T. Yeh, H. M. Sun, and T. Wang, “Security analysis of the generalized key agree-
ment and password authentication protocol,” IEEE Communications Letters, Vol. 5,
2001, pp. 462-463.

27. E. A. Young, “SSLeay encryption library,” http://www2.psy.uq.edu.au/~ftp/Crypto/.
28. M. Zhang, “Analysis of the SPEKE password-authenticated key exchange protocol,”

IEEE Communications Letters, Vol. 8, 2004, pp. 63-65.

Jia-Ning Luo (羅嘉寧) is an Assistant Professor of De-
partment of Information and Telecommunications Engineering of
Ming Chuan University. He received the B.S. degree in Electrical
Engineering and M.S. degree in Computer Science Engineering
from Tatung University, and Ph.D. degree in Computer Science
from National Chiao Tung University. Jia-Ning Luo is interested
in distributed systems and network security.

SECURE AUTHENTICATION PROTOCOLS RESISTANT TO GUESSING ATTACKS

1143

Shiuhpyng Shieh (謝續平) is a Professor at Department of
Computer Science of National Chiao Tung University (NCTU).
He has worked as advisor to many institutes, such as National
Security Bureau, GSN-CERT/ CC, National Information and
Communication Security Task Force. Before joining NCTU, Dr.
Shieh participated in the design and implementation of the B2
Secure XENIX at IBM, Federal Sector Division, Gaithersburg,
Maryland. He also designed and developed NetSphinx, a network
security product, for Formosoft Inc., which is awarded 1999 net-
work product of the year, Taiwan. Dr. Shieh received the M.S.

and Ph.D. degrees in Electrical and Computer Engineering from the University of Mary-
land, College Park. He is a senior member of IEEE, and an editor of ACM Transactions
on Information and System Security, Journal of Computer Security, and Journal of In-
formation Science and Engineering. He was on the organizing committees of numerous
conferences, such as ACM conference on Computer and Communications Security,
IACR Asiacrypt. Dr. Shieh published over a hundred academic articles, including papers,
patents, and books. Recently he received the Outstanding Research Award from National
Chiao Tung University for his academic achievement in research, and the Outstanding
Achievement Award from Executive Yuan of Taiwan. His research interests include in-
ternetworking, distributed operating systems, and network security

Ji-Chiang Shen (沈志強) is an project manager of Lite-On
Technology Corporation. Mr. Shen received the B.S. degree in
Department of Electrical Engineering from National Tsing Hua
University and M.S. degree in Computer Science from National
Chiao Tung University, Taiwan.

