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Optimal Information-Dispersal for Fault-Tolerant
Communication Over a Burst-Error Channel

Shiuh-Pyng Shieh, Yea-Ching Tsai, and Yu-Lun Huang

Abstract—The (m, n) wireless information dispersal scheme PZ*[(7,j), (k,[)] critical probability: theP, such thatR(i, j)

?

(WIDS) is useful for fault-tolerant parallel wireless communica- R(k,1)
tions, Wherg it can bg used to tolerate up ton — m path (sub- * Pr[(4,7), (k, )]
channel) failures. This paper constructs a performance model of * 5 LNTS p
(m,n) WIDS used in wireless communications, and proposes an Si piece # of (m,n)-WIDS,1 <i <n
algorithm to find the optimal set of (m, n) with the highest reli-  £u,~N (m,n)-WIDS; for all m,n,u € N,1 <
ability. This algorithm reduces the complexity of finding the can- n/m < u,n < N:feasible WIDS set
didate set of (m, n) from O(IN?) to O(IV); N is the maximum TR tolerable error
number of available sub-channels.
leslg%%ETSL?;;Egﬁlstltolerance, security, threshold scheme, wire DEFINITIONS
dispersal the number of sub-channels used to
ACRONYMS. Qegree:. transmit the data. N
information the ratio expanded when transmitting a
IDS information-dispersal scheme expansion messagé\/. For example, if one makes
WIDS Wireless IDS ratio copies of a messagd and transmits these
copies over channels, then the expansion
NOTATION ratio of the messag#/ is n.
n the degree of information dispersal
1o greatest-integer-lower-bound of 2 I. INTRODUCTION
Nu greatest-integer-lower-bound of v , L
n* greatest-integer-lower-bound @ - a)/2 N THE PAST_decadg, wireless communications technology
m [see(m, n)-WIDS] e_mergeql rapidly. W|reless_ networks allow people to com-
n/m ratio of information expansion; /m > 1 municate with each other anytime and anywhere. With the rapid

(m,n)-WIDS a WIDS which breaks a data block into development of communication networks, the need for reliable-
' transmission increases. The probability of successful transmis-
sion in a wire-line environment is very high nowadays. But in
received’ suffice for reconstructing the daté/vireless environments, the probability of transmission failure
block: 1 < m < n can increase because of bad vyeather, te_rrain_, weak transmissi_on
N maximum number of available communicalPoWer. etc. When a Qata—set is tran§n1_|tted incorrectly, then it
needs to be retransmitted. Retransmission can be very expensive

pieces and transmits them in parallel over
wireless channels such that ‘amy pieces

tion sub-channels

" upper bound of the information expansiorfnd unacceptable for real-time applications. To support more re-
ratio. iable transmission quality in such environments, some schemes
P Pr{e{ sub-channel can deliver the correct in®'€ needed to increase the probability of successful transmis-
formation piec; 0 < P, < 1 sion , .
R(m.n) binfc(m; "\E/)]T%l)'Pr{the transmitted data Ve have already used IDS to increase the reliability of a net-
’ block ca;n beséor}ectly constructed using thivork service provided by a cluster of servers [9]. This paper pro-

(m,n) — WIDS} poses and analyzes the WIDS to support fault-tolerant, parallel
’ wireless communications. In &m, n) WIDS, the sender trans-
forms a messag#/ into n pieces,S;(1 < ¢ < n), and trans-
_ _ _ mits them over parallel wireless channels such thatapyeces
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This paper proposes the WIDS to support fault-tolerant, par-

IThe singular and plural of an acronym are always spelled the same. allel wireless communications, and gives the algorithm to find
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the optimal set ofm, n) WIDS which gives the highest com-  « information dispersal degree,

munication reliability. This algorithm greatly reduces the com- < information expansion ratio,

plexity of finding the candidate set ¢fn,n) from O(N?) to » Pr{successful transmission of each pag¢ket

O(N). Also there is no efficient way to determine the optimal set of
Section Il introduces the WIDS used in the fault-tolerant,, n) WIDS with the highest communication reliability when

parallel wireless communications. Related research on wirelegsklying WIDS in wireless communications.

communications is also reviewed. Section Ill discusses andReference [7] defines a burst-error channel using a Markov

analyzes the success probability of parallel transmission usim@del; and describes the throughput analysis method of a hybrid

WIDS. Then it presents some theorems for the WIDS modglitomatic repeat request (ARQ) under the burst-error channel

used in parallel wireless communications. These theoremsing the 3-state Markov model. The applicable range of the

help develop the schemes that find the, ) with the optimal  burst-error channel has been clarified for the hybrid ARQ using

performance. Section IV proposes some methods of getting t@st-error correction codes—convolutional coding.

optimal(mn, n) WIDS set to achieve better reliability. Section V  After the sequence of analysis step in this paperthef a
discusses some properties(ef, n) WIDS for fault tolerance. burst-error correction code is:

M, o]
II. INFORMATION DISPERSAL SCHEME . ZB(z‘) Z G(i):
In a wireless communication environment, there are many i=1 i
factors that can cause a data-transmission error. These include
bad weather and outside noise. Although error-correcting codé 3
[3], [8] can be used to control error in the transmission, tHe ) :
probability of a channel failure still can not be negligible, es- i},
pecially in bad transmission conditions. An intuitive squtime = burst length, ) )
[10] to this problem is to send a message along a path, requist =~ guard length, as described in (11).
a confirmation, and retransmit it along a different path in cade(®) are found from the bit error rate of the channel,
of failure. However, re-transmission is time-consuming and e%!'C which depends on the noise condition of the envi-
pensive, thus it is undesirable for communications. WIDS c&f( ronment.
be used to increase the probability of successful transmission. L ,
IDS [6] was first proposed as a method of breaking a filde = the average silence length,

F into n packets of lengttL/m , wherem < n, such that Y& = the average burst length.
m of them suffice to reconstruct the original fil€. Let F' = If the transmitted data is large, the average burst number of a

(b1, ba. ..., br) be a string of charactersy, mo be 3 integers PacketisV/(Np + N¢) when the packet consisting 6f bits.
with mg < no. For simplicity, assume thdtis a multiple ofin. So, the error correction probability of the packet/éfbits is:

. . . . N/(Np+Ng)
Find ang x mg matrix A such that all itsng x my submatrices *¢ .

=M

9

occurrence probability of each burst length
Pr{1 error bit occurrence after silent section length

—
(D\_/D'
s

are inevitable. Breal into strings of lengthn,: N= size of the data, in bits. -
When applying(m, n) WIDS in a system with a fixed code
F = (b1,b2,...,bmg) (bimg+1s---,02my) - - rate R, a messagel/, will be transformed into: pieces. Each

piece of the packet is framed with a fixed sizé7|/m). Thus,
the packet size of data {$M|/m)* - (1/R). The packet size is
influenced bym. If the packet size of1,1) WIDS is L, then

X (bL7m0+17 .. -7bL)

The splitting operation transforns into nq pieces by the packet size ofm,n) WIDS is L/m. In wireless commu-
nications, the error probability can be influenced by the packet
Fy b1 bmoy1r oo bL_mot1 size.
Fy by bmgy2 oo bL_mey2 Because thesev pieces of messagd/ are transmitted
: =4 : : : simultaneously over adjacent subchannels, assume that these
F ' ' ' data packets are transmitted in the same environment: the
no bmo b2m0 bL

bit error-rate of each subchannel is the same. The same bit

Obviously, |F; = L/my is independent ofy, whereL is the error-rate derives the sanig(:) and G(¢) and thus results in
length of F'. The total number of characters produced by WID8e sameP, for every parallel subchannel.
is (ng/mo)* - L. Then the information expansion ratio of WIDS Let the original packet size be L, and let the success proba-
is ng/mg. The computation complexity i9(m3). bility of transmitting a messag¥l be P,. When using thél, n)

Since then, WIDS has been applied to fault-tolerant paW/IDS to transmit the messagd, the success probability be-
allel communications in several types of networks, such asmesP;. When using th€2, ») WIDS to transmit this mes-
hyper-cube and Omega networks [1], [2], [4]. These methodage over the burst-error subchannels, the packet size becomes
can prevent paths or channels from failing.nlfpieces are L/2, independent ofi. Thus, the success probability of each
transmitted ovem vertex-disjoint paths or channels, it cardata packet becomegP;. Similarly, when using thém,n)
tolerate up ton — m packet failures. However, there is littleWIDS to transmit this message over the burst-error wireless sub-
research to date discussing the relations among the 3 importamnnels, the probability of the successful transmission of each
factors which influence communication reliability: packet becomes/P,.
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This result can be applied to the WIDS used in parallel wire- R(3,4)
less communication. Section Il discusses some useful theorems
of (m,n) WIDS used in a wireless environment. These theo-
rems can help to find the optimal set(@f, n) WIDS.

Ill. FUNDAMENTAL THEOREMS

This section describes the fundamental theorems of the pro-
posed(m, n)-WIDS in the followingAssumption
« All communication sub-channels have the same success
probability of transmitting a data packet. 0.2 0.4 0.6 0.8 1
Ina (m,n) WIDS, the probability of successful ranS-—rijy 1 The communication reliability curve for a (3, 4) WIDS.
mission of each packet i$/P;. Thus, the sum of the prob-

abilities in the following cases calculate the communicaR(m n) — 0. The following theorems (3.3)~(3.8) the optimal
tion reliability R(m,n): (m,n) amongR(1,n), R(2,n), ..., R(n,n).
* areceiver receives any pieces from the: sub-channels * t1a0rem 3.3:1F 0 < P, < 1, thenR(m,n) > R(m +1,n)
and reconstructs/: whenP, — 1. (See Appendix C for the proof.)
on L (R/P)™ - (1 — R/P)™: Theqrem 3.3 implies that any \(V!DS which needs fevyer mes-
sage pieces to reconstruct the original message, has higher relia-
bility, while the message dispersal degrde fixed andPs — 1.

0O O O o
O N & o D =

Ps

Cy — any m fromn

( %/ Ps)™ — m successes Hence, corollary 1 is true.
(1— %/P)" ™ — n — m failures Corollary 1: R(1,n)isthe optimal ofR(i,n) whenPs — 1,
forl <i¢ < n.
* areceiver receives any + 1 pieces from the: sub-chan- ~ Theorem 3.4: R(n-) is the optimal ofR(i,n) when Py, —
nels and reconstructy/: 0+ for 1 < i < n. (See Appendix D for the proof.)
By Theorem 3.4y, is a critical number, while the success
n m m+1 m n—(m+1
mt1 - (VPs) (1= ¥VF) () probability of communication channels is very low. Theorems
- areceiver receives pieces from the, sub-channels and 3-2=3-7 show that the curves &>, n), ..., R(n,n) do not

have intersections.
Theorem 3.5:Let f(p) = ((1— *=¥/p)*™)/((1 — ¥p)*)
Cr - (R/P)™ - (1 — R/P)" " wherea,b € N — {1}.

N — {1} — the set of integers from O ¥, but not including

reconstructs\/:

Cy +1f : .
:L“ _n) aym rom the integer: 1. Then there exists oRge (0, 1), such thatf(p)
(W Ps)" — n successes increases ir{0, P;) and decreases {{P;, 1).
(1— /P~ (m*) oy — (m + 1) failures (See Appendix E for the proof.)
R(m,n) Theorem 3.6:1f m > n, thenR(m,n) > R(m + 1,n).
' n—m (See Appendix F for the proof.)
=Ch - (VPs)™- (1 Y -Ps) Theorem 3.7:1f 2 < m < 5 then there exists exactly one
Leom ( ,,\,/F)mﬂ (1= /Py critical probability, P, such that
e 3 (1= %/P,
4o O (/PO (1= /P R(m,n) > R(m —1,n) when0 < P, < PZ,
n . . R(m,n) = R(m —1,n) when P; = P},
= n (R P (1 — R/ P :
Z; ai- 2 :) R(m,n) < R(m —1,n) when P; < Ps < 1.

Theorem 3.1: R(m, n) is strictly increasing foh < P, < 1. (S€e Appendix G for the proof.) -

(See Appendix A for the proof) Asin Theorem 3.7, every pair of WIDS has, at most, 1 critical

Theorem 3.1 suggests th&fm, n), for fixed m & n, is pro- Probability. DefineP?[(i, j), (k,1)] as the critical probability of
portional toP,: the R(m, n) increases as thB, of individual 2 different WIDS, (i, j) WIDS and(k, /) WIDS, that satisfies

sub-channel increases. the following 3 conditions:
Theorem 3.2:1f 0 < P, < 1, thenR(m,n) < R(m,n + k) 1) R(i,j) > R(k,1) if 0 < Py < P*[(i,5), (k. 1)],

(See Appendix B for the proof) Theorem 3.2 suggests that the3) R(i,j) < R(k,1)if P¥[(i,7),(k,l)] < Ps < 1.
communication reliability ofm, n) WIDS is lower than that of Thusthese Theorems (3.5)—(3.7) indicate thatfor any 2 WIDS in
(m,n + k) WIDS: if more pieces of the message are sent, btite WIDS class, a WIDS can have better reliability in a range of
the same number is needed to be received in order to recoverthebut worse reliability in the other range. That is, a particular
message, then the communication reliability is improved.  WIDS does not always give better reliability than another. This

Fig. 1 shows the distribution of reliability curves. Whersuggests that a designer must determine the rande &fst,

P, — 1, thenR(m,n) — 1. Similarly, whenP; — 0, then and then choose the right WIDS in the class.
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’5"/{’1”}0 {2,/1}/

Ps*{(2,n),(3,n)]

rse((3,n),(4,n)]
%

Ps
0.20.40.60.8 1

. o o Fig. 3. The relationships between thB(1,n),R(2,n),R(3,n), and
Fig. 2. The curves of communication reliability fér2,20) WIDS, where R(4,n).

1<m<n.

Theorem 3.8 proves the intersectiongdf{(m — i, n), (m — thenR(i, n) is better tharfi(i + 1, n); otherwise Ji(i + 1,n) is

i — 1,n)] have decreasing order whelincreases for i‘ixedz. better thanR(i, n). Thus, the optimal WIDS for the two ranges:

Based on this and previous Theorems 3.5-3.7, it is possible to Py > P7[(i,n),(i+1,n)], and P,
find the optimal WIDS with low complexity. < PI[(i,n), (i+1,n)]

Theorem 3.8:For fixedn > 6, if 2 < m < 75, then are different. Theorem 3.8 shows that the intersections
Pl(m—1,n),(m,n)] > P}[(m,n),(m+1,n)]. P*[(i,n),(i + 1,n)] of (m,n) WIDS are in decreasing

(See Appendix H for the proof.) sequence:

Theorem 3.1 proves thd(m,n) is an increasing function P*[(1,n),(2,n)] > P*[(2,n),(3,n)] > - -
from 0 to 1. Fig. 2 is the graph of alin,n) WIDS curves for Prling —
" — 2. > P72 —n), (n2,n)].

In Fig. 2, someR(m, 20) functions rapidly increase to 1 when Theorems 3.7 and 3.8, provide the relationship between
P, approaches 0.1. The transmission reliability is greatly ind2(1,n), (2,n), ..., R(n2,n) as shown in Fig. 3.
proved whenP, is very small. The performance of WIDS ap- In the regionP;[(1,n), (2,n)] < Ps < 1, by Theorem 3.7,
proaches 1 whet?, is greater than some value, such as 0.1 iR(1,7) > R(2,n). By Theorem 3.8,
this example. The simulation results show that the greatsy
the fasterR(m,n) approaches 1. When choosing the optimal PI[(2,n),(3,n)] < P7[(1,n),(2,n)].
(m,n) combination, this phenomenon suggests that there wil

be no difference in choosing tho&m, n) which approach 1; Thus in this region,R(2,n) < R(1,n). Similarly, the
i o i O 8m, n) PP P*[(3,n), (4,n)] (it it exists) is smaller thaP*[(1, n), (2, n)];
thusR(3,n) < R(1,n), and so on. Therefore, whén — 1—,
it is clear thatR(1,n) > R(2,n) > --- > R(n,n) in this
region. If the information expansion ratio problem is not con-
Section IV-A provides a method for determining the optimalidered, ther?(1, ) is optimal in this region. I{1,n) WIDS
WIDS with highest communication reliability when the fixed do not satisfy the information expansion ratio, then choose
sub-channels are all used in the parallel communication. The a2,n), R(3,n),..., R(n,n) respectively, until the selected
timal m value depends on what regiaf; (4, n), (i+1,n)], Ps  (m,n) WIDS satisfies the information expansion ratio.
belongs to. Algorithm 4.1 reduces the complexity of finding the Corollary 2: If P*[(1,n),(2,n)] < P, < 1, then the op-
optimal(m, n) WIDS which have optimal communication reli-timal value ofm is 1. If (1, ») WIDS do not satisfy the informa-
ability from O(n) to O(1). tion expansion ratio, then choo®2, n), R(3,n), ..., R(n,n)
Then, Section IV-B considers the case of the WIDS used tgspectively, until the selectée, n) WIDS satisfies the infor-
support fault-tolerant communication when the maximum avathation expansion ratio.
able sub-channelsy, is given. The optimal WIDS uses atotal |f P*[(2,n),(3,n)] < P. < PX(1,n),(2,n)], then
of V sub-channels when the problem of ‘information expansioR(2, ») > R(3,n) and R(2,n) > R(1,n) from Theorem
ratio’ is ignored. Section IV-C considers the information ex3.7. By Theorem 3.8P*[(3,n), (4,n)] < P*[(2,n),(3,n)];
pansion ratio. A method is proposed to determine the candidgi@is R(4,n) < R(3,n) < R(2,n); and so forth. Thus, the
WIDS set of the optima(m,n) WIDS when an upper-bound optimal communication reliability i2(2, ) in this region. If
of information expansion ratifu) and the number of available the information expansion ratio is not tolerable, then choose
sub-channel6N) are given. This method can reduce the numbeg#(3, ), R(2,n), ..., R(n,n) instead of previous choice, until
of elements in candidate WIDS set fraf{N?) to O(N). the information expansion ratio is satisfied.
Corollary 3: If P[(2,n),(3,n)] < Ps < P¥[(1,n),(2,n)],

?

A. Determining Optimain With Fixedn for (m, n) WIDS then the optimal value ofn is 2. If (2,n) WIDS does

This section proposes a method to determine the opet satisfy the information expansion ratio, then choose
timal WIDS with the highest communication reliability over R(3,n), R(4,n),..., R(n,n) respectively, until the selected

sub-channels. Theorem 3.6 shows that wiheh 72, the(m,n) (m,n) WIDS satisfies the information expansion ratio.
WIDS has higher communication reliability thgm + 1,n) Similarly, when PY[(I + 1,n),(i + 2,n)] < P, <

?

WIDS. Theorem 3.7 shows thati, > P}[(i,n), (i + 1,n)], Pr[(i,n), (7 + 1,n)], then the optimal WIDS ifR(i + 1,n). If

IV. OPTIMAL INFORMATION DISPERSALSCHEME
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TABLE |
THE INTERSECTIONS P} [4, 7] = P [(¢,7),(1 + 1,j)] FORj = 4 — 84

J | PrL,j]  Pl(2,5] P34 Pr4,4] b[5,4]
40271837

5 | 0.579696

6 | 0.768788  0.022815

7

8

9

0.874048  0.132044

0.931467 0.294322  0.001058

>0.95 0.457744  0.016607

10 | >0.96 0.597068  0.065319 3.2471*-5

11 | >0.93 0.706502  0.147927 0.0013733

12 [ >0.90 0.788786  0.251678 0.0096283 1.1519*-5

J| Pr2,4] P35  Pr[4,5] P;[5,7] P16, 3] LY
13| >0.85 0.361982  0.0324719  8.2062* — 5
14 | >0.875  0.468065 0.0741481  0.0010300  1.6455* — 5
15 | >0.875  0.563811 0.133610 0.0052147  3.2609* — 5
16 | >0.875  0.646666  0.216248 0.0161839  8.4637* =5 1.9121* —5

i | PB3. Pridl  Pr5,) P2(6,] P2[7,4] P2(9,4] P2[10,4]
17 | > 0.7 0.286239 0.037125 6.4493% — 4  3.1882* — 4
18 | >0.7 0.368209 0.069620 0.0027409 5.5832* —6 < 10* —14
19 | >0.7 0.448005 0.113332 0.0080738 6.4052* — 5  4.450* — 9
20 | >0.7 0.558350 0.166442 0.0185811 3.7310* —4 1.091* -8 9.413* — 11
21 | >0.7 0.66091 0.226317 0.0358782 1.4181* —3 5.251* — 6 1.164* — 10
i | Priag)  Pr6,) P74 P?[8,3] P:(9,] P?(10, ]
22 | >05 0.290135 0.060860 4.0303* —3 4.1486* — 5 1.408* —11 <10*—-14
23 | >0.5 0.355296  0.093581 9.2965* — 3  2.0641* —4 3.638* — 7 1.003* — 11
24 | >0.5 0.418394 0.133343 0.0183573 7.2479* —4 3.9637* —6 5.622* —10 < 10* —14
i | Prlsdl  Pri6d]  Pe(7i) P2[8,3] P2(9,4] P:[10,5]  P:ilj]  Pr12,j]
25 | >0.5 0.178925 0.032180 2.0126* —3 2.5416* — 5 2.1420* -8 5.398* — 14
26 | >0.5 0.228823 0.051391 4.6505* —3 1.1119* —4 3.2689* —7 9.323* —10 < 10*—-14
27 | >0.5 0.283291 0.076197 9.3471* —3 3.7051* —4 2.691* —6 9.11* -9 <10*—-14
i | Pri6j)  Pr7.j]  P:(8,i) P2(9,4] P:(10,5]  Pr1,j]  P:12,5]  P:13,5]  Prll4,j
28 [ >0.3 0.10683 0.016830 1.0053* —3 1.4652* —5 2.328* —8 9.31* — 10 <10* - 14
29 | >0.3 0.1414 0.027741 2.3261* —3 5.8875* —5 249 -7 5.22* — 11 < 10*-14
30 | >0.3 0.1803 0.033333 4.7428* —3 1.8805* —4 1.686* —6 1.3968* —9 1.62* — 14 <10*-14
i | PrT4) P8, P09l P;[10,5]  Prl,5] P12, P!3,5]  P:li4,j] P55 PI(16,5]
31 >0.2 0.06153 8.7319* —3 5.002* — 4 8.1797* — 6  2.0356* — 8 2.158* —12 < 10* — 14
32| >0.2 0.08469 0.0147868 1.163* — 3 5.0806* — 5 1.7144* —7 8.312* —11 <10*-14 <10*-14
33| >0.2 0.112 0.0233628 2.400* -3 9.56173* — 5 1.0046* — 6 3.299* — 10 8.04* — 14 < 10* - 14
34| >0.2 0.131 0.034829 4.503* — 3 2.5098* —4  4.465* -6 1.555* — 8 4.22*% — 12 <10*-14 <10*-14
i | Pr&4)  Prol  P:10,4)  PrL,g]  Pr12,5  P:(13,5]  P:14,5) P55 Pr(16,]
35 | >0.1 0.0494 7.804* — 3 5.818* — 4 1.598* — 5 1.101* -7 9.744* - 11 <10* -14
36 | >0.1 0.067 0.012650 1.212* -3 4.803* — 5 5.780* — 7 1.270* - 9 1.94* — 14 <10* - 14
i | Prog] P10 Prlilj) P24 PR3, Prl(4,4] P54 P64  PI(7,5)  P:[18,5]

37 | >0.06 0.01937 2.311* -3 1.254* — 4 2.398* — 6 1.806* — 8 5.782* —11 < 10* —14
38 | >0.06 0.0282 4.087* -3 2.909* — 4 8.238* — 6 6.726* — 8 9.394* - 11 < 10*-14
39 | >0.06 0.0395 6.776* — 3 6.115* — 4 2.426* — 5 3.242% -7 9.711* - 10 3.15* —13 <10* — 14

40 | >006  0.053 0.010633 1182 —3  6.268* —5 1.272*—6 7.22*—9  6.34*—12 <10*-14
41 | >0.06 0.0 0.0159 6.213* —3  1.455* —4  4.225* —6  3.976* -8  7.92* —11 157" —14 <10*-14
j | Pe[10,5] PIiL5)  P[12,4) Pr13,5] P14, 4] P15, 4] P;(16,4] P17, 4] P7[18, 4] P19,

427 [ >006  0.0228  3.598* —3  3.081* —4 1222 —5 1.784* —7 6.86* —10 3.92* —13 <10 -14
43 | >005  0.031 5.769* —3  6.027* —4  3.133* -5  6.69* -7 = 4449* -9 593*-12 <10*-14
44 | >005  >003 8828 -3 1101*—3  7.276%5 2.16* -6 2.285*—8  6.06*—11 2.25*—14 <10*—14

the information expansion ratio is not satisfied, then choose ttie selectedm, n) WIDS satisfies the information expansion

second consideratio®(i + 2,n), R(i + 3,n),...,R(n,n), ratio.

respectively, until the information expansion ratio is satisfied. By Theorem 3.6, the smallest intersection(ef,n) WIDS
Corollary 4: Inthe regionP*[(I+1,n),(i+2,n)] < P; < forfixed n is P¥[(n2,n), (n2 + 1,n)]. WhenP; is in the region

P*[(i,n), (i + 1,n)], the optimal value ofn isi + 1. If (¢ + (0, PX*[(n2,n), (n2 + 1,n)]), the optimabn is 7,.

1,m) WIDS do not satisfy the information expansion ratio, then When givingn sub-channels, and success probabififyfor

chooseR(i+1,n), R(i+2,n), ..., R(n,n) respectively, until transmitting the original message usifigl) WIDS, choose the
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TABLE | (Continued)
THE INTERSECTIONS P*[i, j| = Pr[(4,7),(i 4+ 1,j)] FORj = 4 — 84

J [ POLj]  Pe(i2,5]  Pg(13,5]  Pr(i4,j]  Pi[15,5]  P:(16,3]  Pr(7,5] _ P:(18,5] __ Pr[19,j]
45 | > 0.03 0.01296 1.897* -3 1.550* — 4 6.139*-6 9.62* — 8 4563* —10 4.08* —13 <10*-14
46 | > 0.03 0.018 3.101* —3 3.066* — 4 1.566* —5 3.494* —7 2.684* —9 4.94* — 12 <10* -14

j | Prl12,4)  Pr(13,5)  Pr(i4,5)  P:(15,5]  Pr16,5]  P:(7,5]  Pr8j]  P:19,5]  Pr[20,]]
47 | > 0.02 4.84* — 3 5.680* —4 3.638* —5 1.1* -6 1.286* —8 4.32* — 11 2.62* — 14 <10* - 14
48 | > 0.02 7.2¥~3 9.939* —4  7.796* — 5 3.086* —6 5.192* —8 2.907* —10 3.72* —13 < 10* - 14

j | Pr3,j)  Prl4,4)  Pr(s,g)  P(6,5]  P:17,5]  Pr(18,5]  P:19,5]  P:[20,5]  Pr[21,j]
49 | > 0.01 1.65* —3 1.556* —4 7.827* — 6 1.813* -7 1.575* -9 3.788* —-12 <10*-14
50 | >0.01 2.63* -3 2.919* —4 1.819* -5 5.594* —7 7.119* -9 2916* —11 263*—-14 <10* - 14
51 | >0.01 4.40* - 3 5.183* —4 3.918* -5 1.5650* — 6 2.758* —8 1.782* —10 2.08* — 13 <10* - 14

j | P4,j) P05 P64 Pr7,5)  P:(18,j]  P:19,5]  P:[20,5]  Pr21,5]  Pr[22,j)
52 | > 0.006 8.76% — 4 7.887* —5 3.913* —6 9.368* —8 5.04* —10 2.719* —12 <10*-14
53 | > 0.008 1.42* -3 1.496* —4 9.908* — 6 2.838* —7 3.889* —9 1.88* — 11 2.34* — 14 < 10* — 14
54 | > 0.008 2.20* -3 2.691* —4 1.968* —5 7.783* —7 1.45* -8 1.06* — 10 2.36* — 13 <10* -14
55 | > 0.008 0.003 4.615* —4 3.992* -5 1.956* — 6 4.820* -8 5.10* — 10 1.85* — 12 <10* —-14

i | P(15,5)  Pr(16,5]  Pr17,4]  Pr[18,5)  P:(19,5]  Pr[20,4]  P:2Lj]  Pr22,5]  Pr[23,)
56 | > 0.004 0.0007 7.648* —5 4.549* — 6 1.437* -7 2.104* -9 1.177* -11 1.93* — 14 <10* —-14
57 | > 0.004 > 0.001 1.39274 9.789* — 6 3.906* —7 T7.602* —9 6.243* — 11 1.71* — 13 <10*—-14

i | Pz(16,5]  Pr7,5] P18,  Pr19,5]  Pr[20,5]  Pr21,4]  P:[22,5]  Pr[23,5]  Pr[24,j)
58 | > 0.001 2.49* — 4 2.018* -5 9.778* -7 2.473* -8 2.83*-10 1.215*-12 <10*-14
59 | > 0.001 4.03* — 4 3.901* -5 2.275* -6 7.270* -8 1.12* -9 7.19* — 12 1.42* — 14 < 10* - 14
60 | > 0.001 6.4* — 4 7.178* —5 4.95* -6 1.959* — 7

3.974* -9 3.578*-11 117 -13 <10*-14

j| P74 P08,j]  Pr(19,5]  Pr[20,5]  Pr[21,5)  Pr[22,5]  Pr[23,5]  Prl24,5]  Pr(25,4)
61 | >6x—4 1.26* — 4 1.019* -5 4.888* —7 1.286* —8 1.55* —10 7.69* —13 <10*-14
62 | >6x—4 2.13* —4 1.986* —5 1.137* -6 3.673* —8 598* —10 4.248* —12 1.07* - 14 <10* -14
63 >2* -4 3.47* —4 3.691* —5 24894* —6 9.82* —8 2.06* — 9 2.02* — 11 7.79* — 14 <10* - 14
64 | >2*—-14 5.4* —4 6.56* — 5 5.141* — 6 2.443* —7 6.456* —9 8.46* — 11 4.74* — 13 < 10* - 14
65 | >2* -4 8* —4 1.12* -4 1.01* -5 5.687* —7 1.853* —8 3.162* —10 2.47* —12 < 10* - 14

7 P8 ] Pr(19,5]  Pi[20,5]  PrLj]  Pi[22,j]  Pi[23,j]  Pi[244]  Pi[%5,j]  Pr[26,]]
66 | >1*-3 1.85* —4 1.894* —5 1.247* —6 4927 -8 1.067* -9 1.128* -11 5*—-14 <10*—-14
67 | >1* -3 29* -4 3.405* — 5 2.591* —6 1.221* -7 3.288* -9 457 —-11 2.86* — 13 < 10*14

i | Pr19,5)  Pr20,4]  Pr21,j]  Pr(22,5]  Pr[23,5]  Prl24,3]  Pr[25,5]  P:[26,5]  Pr27,4)
68 | >1%x-3 4* — 4 5.89* — 5 5.127* — 6 3.844* — 7 9.34* -9 1.66* — 10 1.42* — 12 < 10*14
69 | >6*—4 9* —5 9.679* —6 6.2564* — 7 2.469* —8 5.50*-10 6.221* —12 3.12* —14 <10*—-14

i | Pr[20,]  Pr21,4]  Pri22,4]  Pr[23,5)  Pr24,j)  Pri2s,5]  P:[26,3]  Pr2r,5]  Pr[28,j)
01 >1*-4 1.76* — 5 1.305* —6 6.107* — 8 1.672* —9 1.44*—-11 1.688* —-13 <10*-14
1| >1*-4 3.08% -5 2.599* —6 1.442* -7 4710 -9 878*—-11 8.024*-13 <10*-14
72 | >2* -4 5.2* -5 4.956* —6 3.135* —7 1.237* -8 2.83*—-10 3.4*-13 1.90* — 14 < 10* —-14
3| >2*—-4 8.51* — 5 9.078* —6 6.57* -7 3.0563* —8 849*—-10 1.297*—-11 9.81*—-14 <10* - 14

i | Pr2nj)  Pre2,g]  Pr23,j]  Pr[24,5)  Pr(255]  Pr26,5]  P:27j]  Pr28,5]  Pr[29,)
74 >1*—-14 1.60* — 5 1.316* -6 7.110* — 8 2.371* —9 452* —11 4485*-13 <10*-14
7| >6% -4 2.74* -5 2.528* -6 1.571* -7 6.20* — 9 1.45* — 11 1.842* —-12 1.1*-14 <10* - 14
76| >2*—-4 4.5* -5 4.670* -6 3.308* -7 1.526* -8 4.31* —-10 6.87* —-12 5.62* — 14 <10*-14
7| >2*—-4 ™ -5 8324* -6 6.663* — 7 3.555* —8 1.193* —9 2.349* —11 2.48* —13 <10*-14

j| Prl22,j)  Pri23,j]  Pri24,5]  Pr[25,5)  P:(26,5]  Prl27,4]  Pr[28,5]  P:[29,]  P7[30,4]
78 | >4* -4 1.43* -5 1.288* —6 7.873* —8 3.106* -9 7.42* —11 9914*-13 <10*-14
79| >3*-4 2.39* -5 2.397* -6 1.664* — 7 7.631* -9 2.18*-10 3.617*—-12 3.18*—-14 <10* —-14
80 | >3*—-14 39* -5 4311* -6 3.368* -7 1.777* -8 6.00n -10 1.215* —-11 1.36* —13 <10* —-14

i | Pr23,5)  Prl24,5)  Pr[2s,45]  Pe(26,5)  Pr2n,4)  Pr8,j)]  Pr(29,]  Pr(30,5]  P:[31,4)
81 (| >4*—-4 7.5* — 6 6.554* —7 3.944* — 8 1.55* — 9 3.79* - 11 5.303*—-13 <10*-14
82 | >3*—-14 1*-5 1.229* — 6 8.366* — 8 3.815* -9 1.10*—-10 1.896* —12 1.78*—14 <10* —-14

i | Pri2ag)  Presg)l  Pr26,j]  Pr2r,j]  Pr(28,5]  Pr[29,]  Pr[30,5]  P:[31,4)

83 | >2*-5 2.22* — 6 1.701* — 7 8.889* —9 3.02* —-10 6.27*—12 7412*-14 <10*-14
84 | >2*—-4 3.91* -6 3.331* -7 1975* -8 7.79* -10 1.93*-11 2.8*—-13 <10*—-14

optimalm by finding the region to whicli¥, belongs. Algorithm Algorithm 4.1: Finding Optimai» for (m,n) WIDS
4.1 shows how to find the optimad.

Input: n: the number of sub-channels
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(4,8) 3.8) 2.8) (1,8)
[Nl 1 ] |
T T 1 1
0.001058 0.2943 09314 1
Fig. 4. The optima(m,n) WIDS forn = 8.
4,9) 3.9) 2.9 (1.9)
L1 1 | |
— | T 1
0.016607 0.4577 095 1

Fig. 5. The optima(m,n) WIDS forn = 9.

Output:m: the optimal value ofr, such tha{m,n) WIDS
can achieve the optimal communication reliability

1. EstimateP, when transmitting the message using (1, 1)
WIDS. (That is, the traditional way to transmit the data.)

2a. After estimating thé,, look in Table | forj = n to
determine the region to which, belongs.

2b. Search for the optimal. value as follows.

- case 1: IfP, > P;[(1,n),(2,n)], then the optimain is 1.

- case 2: IfP, is in the region:

[P ((m' —1,n),(m',n)), Py ((m',n),(m' + 1,n))], then the
optimalm is m'.

- case 3 IfP, is smaller than the smallest intersection:

(0, PY[(n2,m),n2 + 1,n)]), then the optimain is 5-.

3. If the optimalm cannot satisfy the information expansion
ratio requirement, then choose + 1, n) WIDS, (m + 2,n)
WIDS, ..., (n,n) WIDS instead of m, n) WIDS respectively,
until the information expansion ratio is satisfied.

4. Outputm.

B. Determining Optimain With an Upper-Bound of

Section IV-A considers the cases of the Information Dispergal Values chosen in Section IV-A are both 1 because the
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. (1,n) |
| I
Ps*[(1,n),(2,n)] 1
(1.0+1)
i t
Ps*{(1,n+1),(2,n+1)) !
Fig. 6. Indication of optimal (m,n) WIDS when P, is in
(P;[(l,n),(‘_),n)],l).
Gin)
| |
| I
Ps*{(jn),G+1,n)] Ps*((i-1,0),G,n)]
G.+1) [
f T
Ps*[(j,o+1),G+1,0+1)) P*((-1,m+1),G, )]

Fig. 7. The indication ofm, n) WIDS, whenP; is between 2 intersections.

» Case 1/P; is in the region P¥[(1,n), (2,n)],1),
» Case 2.P, is between 2 intersections,
» Case 3:P; belongs to the regiofi0, PX[(n2,n), (n2 +
1,n)]).
The indication is shown in Fig. 6.
Case 1.
Divide this case 1 into 2 cases, A and B
Case 1A:P, > Pr[(1,n + 1),(2,n + 1)]; the optimal

Scheme used to support fault-tolerant parallel communicati§iP-channel number is or » + 1. As discussed in Theorem

with n available sub-channels. This section considergithe:)

3.2, R(m,n + 1) has better performance thdt(m,n). Thus

WIDS performance when a different number of sub-channdf optimalm value is(1,n + 1) WIDS.
n1 andn, are used. Some principles are provided to help usersCase 1BFP;[(1,n+1), (2,n+1)] < Py < P7[(1,n),(2,n)];

determine the optimal WIDS with highest communication relthe optimal value chosen is 1 when the sub-channel number is

ability. The problem of the information expansion ratio is ngt: and is 2 when the sub-channel numberis- 1. By using

considered in this section.

Theorem 3.7R(2,n+1) > R(1,n+1) whenPs < P}[(1,n+

Appendix | lists the intersections far < n < 84. Thisis 1),(2,n+1)],andR(2,n+1) > R(1,n+1) > R(1,n); thus

the range of, where WIDS is used. Observing these interseéde optimal(m,n) is (2,n + 1) WIDS.

tions, shows thaP; [(m, n), (m + 1,n)] is always smaller than
PZ[(m,n+1), (m+1,n+1)]if PZ[(m,n+1), (m+1,n+1)]
exists. This phenomenon is described in the followAsgump-
tion: P*[(m,n),(m+1,n)] < P¥[(m,n+1),(m+1,n+1)],
if both of them exist.

As mentioned in Section IV-A, every region &, has its

Case 2.

P, is between 2 intersections.

By observing the divided regions af= 8 andn = 9 in Figs.
4 and 5, the region

(PG = 1,8), (i,8)], P[(4:8), (i + 1,8)])

optimal(m,n) WIDS. Divide an axis line into many regions byoverlaid with the region

the intersectionsl*[(z, 5), (¢ + 1, 7)], and indicate the optimal

(m,n) WIDS in every divided region. For example, indicate the

optimal (m, n) WIDS for n = 8 as shown in Figs. 4 and 5.
Now, compare the performance(@f,, n) WIDS and(rm, n+

(PEIG = 1,9), (6,9)], PE{(2,9), (0 + 1,9)]).

By the assumption in Section IV-B,

1) WIDS with a fixedn and a variantn, and find whichone has s [(m. n), (m + 1,n)] < P7[(m,n + 1), (m + 1,n + 1)].

the better reliability. Fig. 4 indicates optimah, n) WIDS for
n = 8, and Fig. 5 indicates optiméin, n) WIDS forn = 9. Itis

hard to decide which is better from these figures. Now, compare

the performance dfm, n) WIDS and(m,n + 1) WIDS, using
3 cases.

Thus, the indication of optimalm,n) WIDS of this case is
shown Fig. 7.
onsider the region

PI(G,n), (5 +1,m)] < Pe < PI[(j — L), (§,n)];
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L G , The optimal (m,n) WIDS is in the set
0 l,'.w'_,_nw"n {(1,8) WIDS,(2,8) WIDS,(3,8) WIDS, (4,8) WIDS}.
That is, wusing total available sub-channels results
({ﬂ.nﬂl) Gao+1) . in the optimal reliability. From Theorem 3.6,
o I | R(4,8) > R(5,8) > R(6,8) > R(7,8) > R(8,8); thus
Ps*{Gi+1,m+1),Gn+1)) Ps[G-1.0+1),G.+1)) R(5,8), R(6,8), R(7,8), R(8,8) are not optimal. The method

to find the optimal value ofn is described in Section IV-A.

Fig. 8. The indication of optimaim,n) WIDS when P, bel : e . . _
lg. 8 The indication of optimafm.n) WIDS when P. belongs 10 rpiq soction ignores the problem of information expansion

(0.P; [(n2- ). (2 + 1.m)]),

ratio.
divide it into 2 cases, Aand B. C. Optimal WIDS With an Upper Bound on Information
Case 2AP, > P[(j,n+1),(j +1,n+1)] Expansion Ratio

The optimalm values chosen in Section | are bgtlfor the
sub-channel whether the numberisrn + 1. As mentioned in
Theorem 3.2R(j,n + 1) has better performance th#i{j, n).
Thus, the optimain value in this case i§j,n + 1) WIDS.

This section considers the problem of information expansion
ratio. A method is proposed to determine the candidate set of
the optimal(m, n) WIDS when an upper-bound of information
w[( p “l( s p expansion ratiqu) and the number of available sub-channels
ng_siﬁBPS [Gon), G+ L] < Py < PG +1), G + (N) are given. This method can reduce the element number of

‘The optimal value chosen jswhen the sub-channel numberthe candidate WIDS set fro(N?) to O(N).
Section Il defines the information expansion ratio taljen

isn, and isj + 1 when the sub-channel numberis- 1. Using for (m,n) WIDS. When given an upper-bound afand the

Theorem 3.7, number of available sub-channélg, the candidate WIDS set
; ; is defined as:
B(j+ 1*’71 +1)> R(jn+1) when Definition (Candidate Information Dispersal Scheme
Py < P[(L,n+1),(2,n+1)], and Set): A candidate WIDS set,C,.n, with u and N, is
and R(j 4+ 1,n+1) > R(j,n +1) > R(j,n); {(m,n)WIDS |for all m,n,u € N,1 < n/m < u,n <
) e N,1 <m < n}.
thus the optima{m, n) value is(j + 1,7 + 1) WIDS. The candidate WIDS set can be reduced so that all optimal
Case 3. , WIDS are still included in the reduced candidate WIDS set. The
P, belongs to the regiof0, P’ [(72,n), (12 + 1,n)]). reduced candidate WIDS set is a subset of the candidate WIDS

 WhenP; > P¢[(n2,n41), (n2+1,n)], the optimalm chosen et For anyP,, the optimal WIDS is an element of the reduced
in Section Il isn, when the sub-channel numberior n + 1.

- ! w-N -
As discussed in Theorem 3.2(n, n+1) performs better than  The candidate WIDS set,. y can be described as the union
R(n3,n). Thus the optima{m, n) value in this case 2,7+ of partitions. Each partition consists of &, n) WIDS for

1) WlD_5- ) ) ) whichm is a constant:
If n is an odd number, there is 1 more intersection of

P¥[(m2,mn + 1), (n2 + 1,n + 1)] when the sub-channel number..x = {(1,)WIDS |1 <t < u} U {(2,1)WIDS |2 <t < 2u}
isn + 1. When P, belongs to the region .

(0, P2 (s + 1), (12 — 1, + 1)), U {(k, (WIDS [k < £ < k- u}

thenR(n2 +1,n+1) is better tharR(n2, n). And R(n2,n+ 1) WIDS |7, 1+ 2 < t < N}
N Sts

is better thanR(n2, n). Thus the optima(n,m) in this case is Ui +1.1)

(n2 +1,n + 1) WIDS.
According to this explanation, the performancéaf, n + 1) N. NYWIDS here k —

WIDS is better thaim, n) WIDS. Thus, when using total avail-" 1% V) },  wherek = ..

able sub-channels, one gets the highest communication reliagy Theorem 3.2, for each partitiof(i, )WIDS |i < ¢ <

bility. Algorithm 4.1 shows how to choose to get the optimal ;. ;) (5, i - u) WIDS has the highest communication reliability
communication reliability; this optimah depends on what re- gmong them. Similarly, for each partition

gion P, belongs to.

For example, lefV = 8; then all combinations dfin, n) are: {(u + 5, )WIDS |9, +j <t < N},
(1,1) WIDS; the(n,+7j, N) has the highest communication reliability among
them. Thus(, n can be reduced to
(1,2) WIDS, (2, 2)WIDS;
(1,3) WIDS, (2, 3) WIDS, (3,3) WIDS; {(i,i-w)WIDS[1 <@ <mu}

U{(nu+ 4, N)WIDS |1 < j < N —nu}.
(1,8) WIDS, (2,8) WIDS, (3,8) WIDS, (4,8) WIDS, By Theorems 3.6 and 3.7, for the WIDS set
(5,8) WIDS, (6,8) WIDS, (7,8) WIDS, (8,8) WIDS. {(ne + 5, N)YWIDS |1 < j < N —1,},
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it can be reduced to
{(nu+ 7, N)WIDS|1<j<N—-n and n+j<n}
when2 < «. Or it can be reduced to
{(nu + 7, N)WIDS|j =1} whenu < 2.
Therefore(C,, x can be reduced tf(z,i - u)WIDS |1 < ¢ <

M} U{(nu + 5, N)WIDS |1 < j < N —npuandn, + j < 12} 0.20.40.60.8 1
when2 < wu, or {(4,i - w)WIDS |1 < i < n,} U {(n. +
7. N)WIDS |J _ 1} whenu < 2. Fig. 9. All curves of communication reliabilityn, 20) WIDS, forl < m <

The number of the elements in reduced candidate WIDS Set
is smaller thanV. Therefore, the number of the elements in .. . .
candidate WIDS set can be reduced froiv2) to O(N). For set can be reduced {di, i - v)WIDS [ = n,}. For example:

letw = 3 and N = 11; thenC51; can be reduced to be
example, letx = 3 andN = 11. n/m should be smaller than by
5 Thgcandidate WIDS st i / {(3,9) WIDS, (4, 11) WIDS and(5, 11) WIDS.

Cs11 = {(1,t)WIDS |1 < ¢t <4} V. DISCUSSIONS ANDFUTURE WORK
U{(2,t)WIDS|2 <t < 6} As in Section IIl, the transmission reliability is greatly im-
U{(3,tH)WIDS |3 <t <9} proved whenP; is very small. The WIDS performances ap-
U{(4,)WIDS |4 < t < 11} ggagh 1 whenP; is greater than some value, such as 0.1 in
- Now, define TR as the acceptable maximum probability of
U {(10,£)WIDS |10 < ¢ < 11} transmitting a message with tkie:, n) WIDS: a(m, n) WIDS

U {(11,11)WIDS} is acceptable if

Cs 11 can be reduced to be 1= R(m,n) <TR.

{(1,3) WIDS, (2,6) WIDS, (3,9) WIDS, (4,11) WIDS, and a5 define((m,n)) as the poin{P,) that the reliability of
(5,11) WIDS}. Thus the number of the candidate WID%m.n) WIDS approaches 1, aniR — 10~'%. The list of

sets is rgduced from 51 to 5. . ~Q((m,n)) whenn = 20 andm < 7, is:
There is another example when the case expansion ratio’is

less than 2. Q((1,20)) = 0.80 Q((2,20)) = 0.688
Letu = 1.5and N = 11, Q((3,20)) = 0.667  Q((4,20)) = 0.653
Cis11 = {(1,1) WIDS} U {(2,£) WIDS |2 < t < 3} Q((5,20)) = 0.656  Q((6,20)) = 0.677
U{(3,t) WIDS |3 < t < 4} Q((7,20)) = 0.681  Q((8,20)) = 0.685
: Q((9,20)) = 0712 Q((10,20)) = 0.831

U{(7,t) WIDS|7 <t < 10} U{(8,) WIDS |8 <t < 11} This phenomenon shows that, if the TR smaller than'+

can be tolerated, then there is no difference in choosing

' (1,20) WIDS, (2,20) WIDS, . .., (10, 20) WIDS when
U{(10,) WIDS[10 < # < 11} U {(11, T1)WIDS}. P, > 0.83. If TR is larger, theQ((m,n)) becomes smaller;
C1.5,11 can be reduced to be i.e., if larger TR can be tolerated, then smallgrwill achieve
{(1,1) WIDS,(2,3) WIDS, (3,4) WIDS, (4,6)WIDS, tolerable performance din,n) WIDS.

(5,8) WIDS, (6,9) WIDS, (7,11) WIDS, and(8, 11) WIDS}. Define Q10~'*[n] as the point that all reliability ofm, n)
WIDS wherem < 1, — 1 and the difference between 1 and

Thus, the number of the candidates in the WIDS set is reducggh,, ) wherem < 7, < 1074, Now, someQ10~4[n] are:
from 31 to 8. B
This paper does not discuss the relations between the 2 ele- (1914

> en the 10] = 0.99 Q10 *[20] = 0.831
ments of the partitiof (¢, - u) WIDS |1 <3 < n,}. Itis diffi-

[
—14 = —14 _ |
cultto prove the relationship betwe@ti, i -u) andR (', - u), Q10_14[30] = 0.521 Q10_14[40] =0.245
because the function(P;) = R(i,i - u) — R(¢,7 - u) ap- Q1077[50] = 0.093 Q107 [60] = 0.029
proaches 0 whef, approaches 1, and both( P,) andr” (P,) Q107*[70] = 0.0083 Q10~'*[80] = 0.001 91
are 0 whenP, = 1. It is difficult to claim which one is better.
But by the simulation resultR(i, - u) is better thanR(; — The greatern is the smallerQ10~14[n] is; this satisfies

1,(i — 1) - u). WhenP, — 1, the difference between 1 andTheorem 3.3. Whem = 40, then R(m,n) — 1m even
R(i,i-w)or R(i — 1,(i — 1) - u) is smaller thanl0~1%. We though P, is only 0.245. This means that the:,n) WIDS
suggest usind? (i, - ) instead ofR(i — 1,(: — 1) - w). The improves parallel transmission whéfy < 0.245. The more
partition {(¢,7 - u) WIDS|1 < ¢ < #,} of candidate WIDS sub-channels that are used, the better the reliability. As
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stated before, iffR = 10714 there is no difference between APPENDIX
choosing(1,n) WIDS, (2,n) WIDS, ..., (n2,n) WIDS when
P, > Q10~"“[n]. If the user can tolerate the informationA. Proof of Theorem 3.1

expansion ratio 2, it will be good enough to choose (the ) For anym, n, the first order derivation aR(m, n) on P, is
WIDS because the information expansion ratio (of,n) , " i
WIDS is the smallest. Ri(m,n) =Cy, - (1= YV F) >0, for0<Ps <Ll

For given P,, there exists one greate§10~14[N - q]
(the smallestN - a) which satisfiesP* > Q107N - a]. B. Proof of Theorem 3.2
n = N - a can be chosen to get the optimal communica- This theorem is proved by mathematical induction.
tion reliability. As mentioned in the previous paragraphs, if 1) Fork = 1,
TR = 107", it will make no difference to choose any of " . m
(LN - a)WIDS,(2,N ) WIDS, ..., (0", N - a)wipg Timsn+1)=Rm,n)+Cpy- (VP -5)
when P, > Q104N - a]. If the user can tolerate the infor- (1= VP gynmmtL
mation expansion ratio 2, it will be good enough to choose the  Thus, R(m,n) < R(m,n + 1).
(n*, N - a) WIDS because the information expansion ratio of 2) Assume this theorem holds fér= ¢. Now—Letn’ =

(n*,N - a) WIDS is smallest. Table Il (in Appendix I) lists n + t then R(m,n) < R(m,n +1) = R(m,n) <
some@10~"*[n]. R(m,n’ + 1). Therefore,R(mn,n) < R(m,n + t + 1);
For example, whe?, = 0.82 and N = 70, it is obvious the theorem also holds fdr = ¢ + 1. By mathematical

that0.82 > Q107'%[n]. It seems that (35, 70) WIDS can be induction,R(m,n) < R(m,n + 1).
the optimal solution because it approaches 1. But= 0.82

is also larger tharQ10~14[20], R(10,20) — 1 whenP, = C. Proof of Theorem 3.3

0.82. One can choose the (10, 20) WIDS instead of (35, 70) Letr(P,) = R(m,n) — R(m + 1,n).
WIDS—because the computation complexity of (10, 20) WIDS

is simpler than that of (35, 70) WIDS. 7(Ps)

Itis reasonable to use fewer sub-channels to achieve the same= 1 — [CSL (1= ¥VP)"+Cr - VP(1 = VD)
performance as using the total sub-chanmé|sf some small n_(m/py\m—=1_(1 __ m/p\n m—l—l]
error can be tolerated, such s ', Although a method is not ot Oy (VR (1 Ps)
proposed to choose the optintat, ») WIDS when some small % [1 _ [Cg (1= ™Y+ Cn
error can be tolerated, this phenomenon is still described and a
method is given to choose tlig:, n) WIDS which satisfiesthe - "V Ps(1 — "/ P)" !
performance requirement. The phenomenon can help choose the, . . n [ m+l m_ (1 mtl n—m

_ + -+ O ( P)™-(1 Py)
optimal (m,n) WIDS when some small error can be tolerated.

This paper proposes tiie:, n) WIDS to support the fault-tol- Itis known that:
erant parallel wireless communication. On the basis that every lim | T{/E] = lim [""V/Ps]=1
adjacent sub-channel is in the same environment, the bit error Pe=lm Pemt”
rate of each sub-channel is assumed to be the same. After ana- hH}f[(l — /P = Phnif[(l - "VP) =0,

s s

n—1

lyzing the(m, n) WIDS performance, and deriving 8 useful the- fork e N
orems, 3 methods are proposed to determine the optimat) '
WIDS with highest reliability in different cases. And because
_ m / _ m+l
1) When given theP, & n, Algorithm 4.1 can determine (1 P> P)

the optimalm which (m,n) WIDS will achieve the op- then
timal communication reliability. The optimal value of , (1— /Py)* o Y
depends on what regidf, belongs to. This algorithmre- '™ [(1 — /P |’ Vk,k'€N, and k>FK.
duces the computation complexity frab(n) to O(1). (P,

2) When the information expansion ratio does not have an lim [(1 — m+\1/'17)n_m}
upper bound, the optimal WIDS uses allsub-channels. s

3) Whenu & N are given, a method is proposed to reduce = lim [C{; (R Ps)mi| =Cp > 0.
the candidate WIDS set for the optim@h,n) WIDS. . _
This method can reduce the number of elements in t eencer(Ps) > 0,1, f(m,n) > R(m +1,n) whenP, — 1.
candidate WIDS set fror®(N?) to O(N). D. Proof of Theorem 3.4

s

It is reasonable to use fewer sub-channels, instead dfall Letr(P;) = R(m,n) — R(m + 1,n), then
sub-channels, if the designated performance can be achleved( )
This phenomenon is described and a method is given to choose"” °

the (1, n) WIDS which satisfies the performance requirement. = [(CZ; (Y Ps) (L= R/ P
The phenomenon can help choose the optimal:) WIDS for m+1
fault tolerance. + ( a1 (V Ps) (1= /Pt
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+...+C7-( R"/PS)”] Because ,
m+1 lim [g(p)] = —— >0,
(s )T = Ry g =5
- and
+ (Cgﬂ-z . ( m+\1/FS) i (1 _ om+l Ps)n7m72
n o ( mtl n lim 9(p) = 1= b =1>0.
+...4+C - (TR Py) )} p—0F b-(b+1\)/]—) 1_\”/5
It is known that Thus:
/B 1 [mtl B lim [g(p)] — oo.
p}féJ VPs] = P}g%J VP =0 p0t 1
and () = p lTFeD
Plilr(iﬁ[(l — 3/P)k] = P111%+[(1 — "R/PH)* =1, b-(b—1)-(yp—1)2
s s . . b — . b—1 b—1 —
Vk e N b-Yp—>b-yp+ *Vp—1].
Thus h(p)=b-p—b-"~/p+ *p—L
' Becauséi(0) = —1 andh(1) = 0, then
: 7"(]DS) : n n\x/_ n—m / 1_1q _1__q —1
P (o] T e (Cn(1= /P) W(p)=pr =" —p= " =p7 - [Vp— /] > 0.
. B Thus,h(p) is an increasing function from1 to 0 when
— Ol - Ps) } p € (0,1); andh(p) < 0 when0 < p < 1. Thus
. . n!-(2m—n+1) 9'(p) < 0when0 < p < 1when0 <p< 1.
=0 —Chp = (m+ 1) (n—m)l" Now, look atg(p); itis a decreasing function from to

(b/b—1). Becausd( > 1, theng(p) = K has only one
solution: f’(p) = 0 has only one solution when= P;.

m

If 2m —n+1 > 0,thenC}, — C7 ., > 0.

Thus, (P.) 4) Thus, f(p) increases whefi < p < P;, and then de-
- _s) i . creases wher; < p < 1.
Psh—n>(1]+ [( ”\/E)m} >0if n>n; D
and R(n, n) is the optimal ofR(i,n) whenP, — 0+, where F Proof of Theorem 3.6
1 <i<n. 1) Letr(Ps) = R(m,n)—R(m+1,n),7(0) = 0,7(1) = 0.
2)
E. Proof of Lemma 3.5 n m/Pp \n—m n
T/(PS) :Cm(l_ PS) _Cm—l—l
l) . (1 _ m+l Ps)n—m—l;
Jim [f(p)] =0, lim [f(p)] = 1. P [r(Ps)] = O = Gl 20,
becausen > 7.
2) 3) Now, prove that there is only 1 point which satisfies
, a (1— B\ ., ' (P,) = 0.
)=+ \———7~ P / n w /P \n—m _ m
b 1_\b/ﬁ T(PS):Cm(l_ PS) _Cm+1
ot (L) s (1= Ry
b—1 1=vp lim [r'(Ps)]=Cy —Cp 1 >0, because m > 5.
. , a b \*"t a1 b \* P, =0t
111n7[f(p)]:g- 1 “y-1 5o Letm+1=bandn —m—1=a.
p—l . - - By Lemma 3.5, wherk < 1, there is only 1 solution
:<b>_<_1)<0. for
b—1 b—1 ’
(1 _ b—\l/ﬁ)n'i'l
W] _a fatl\ 1 a fp)=——Ttm—=
= — — | — | - pb-(6-1) = — _ Y n
o {p%—l b \b-1)" " (1-VP)
Thus, f(p) increases whep — 0%, and decreases when Thus, there is at most 1 point which satisfié&P;) = 0.

p— 1. Points 1, 2, and 3, show that the graphr¢P;) can

3) Prove that there is only ®; which satisfiesf’(p) = 0. be plotted. It increases from 0 to 1 local maximum, and
Thus, solvef’(p) = 0. then decreases from the local maximum to 0. Thug)

is positive wherD < P; < 1. And finally, R(m,n) >

l-"vp 1 :a+1_9. Ea+1'2. R(m + 1,n) whenm > ;.
1—yYp ve-yp b-1 a b—1 a’
then K > 1; G. Proof of Theorem 3.7
(p) = L+ Vb 1 1) Letr(Ps) = R(m,n) — R(m — 1,n). Itis known that
TPI=T100 ey r(0) = 0 andr(1) = 0.
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iy

{2zt - -
1--

Fig. 10.

2) From Theorem 3.3R(m,n) > R(m + 1,n) and
R(m — 1,n) > R(m,n), when Py, — 17, thus
limp, - [r(P,)] < 0.

3) From Theorem 3.4:

. r(Fs)
1 27

o, [cor

4) Proof that there are at most 2 points which satisfy

r'(Ps) = Cp - (1= Y/ P)" ™™ = Cpy

. (1 _ m—\l/E)nfmfl —0.

]:CLLL—CLLL+1>O, if m < .

First, show that
li "(P, 0:
i ((P)) >

. /I"/(PS) n—m
lim |——~—
P,—1- |1 — /P,
1— 77171/—P5 n—m
= lim |C,, —-Ch_; | ———
P;—1— 1— %/ PS

- Y7
=C), > 0.
Then, show that
lim [r'(Ps)] > 0:

P;—1
. ' (Ps n n
Plim [ (\/Pl] =Cn —Cn_, >0.
Let
(P = (L- "¥/P)"—m*' _ Cp  m-—m+1
) (1= ¥/P)n—m  — Cpy mo
it is known that

— 1
u>l for m < ms.

m
Lemma 3.5 shows that there existBa € (0, 1) such thaf (Ps)
increases irf0, P¥) and decreases i, 1). Also

li P, =0, d
i [f(P)] =0, an

li P =1.
Jim [F(P.)

Thus, there are 2 solutions for
cn n—m-+1
P@ - = = ;
S0 = g ==
and 2 solutions for
r'(P,) = 0.

Then, conclude that there are two solutions/A@iP,) = 0,
as shown in Fig. 10.

365

Finally, conclude that there is 1 poine, = P* (P* # 0 and
Pr # 1) which satisfies
r(P,) =0,
r(Ps) >0 when0< P; < PJ,
r(Ps) <0 when P} < P; < 1.

H. Proof of Theorem 3.8
Let:
Tl(PS) = R(m - 1771) - R(mvn);
P = Ps*l [(m - 17”)7 (m>n)]
TZ(PS) = R(m/n) - R(m + 17“)?
Py = Pg,[(m,n), (m + 1,n)].
By Theorem 3.7, if
PS > Ps*l[(m - 17”)7 (m/n)]
R(m —1,n) > R(m,n);
otherwise (excluding the critical probability}(m — 1,n) <
R(m,n).
Similarly, if
P, > P [(m,n), (m + 1,n)],
R(m,n) > R(m+ 1,n);
otherwise (excluding the critical probabilityR(m,n) <
R(m + 1,n).
ConsiderP;. [(m—1,n), (m+1,n)], which is the probability
whenR(m — 1,n) = R(m + 1,n). At the point

P = Pc*,3[(m - 17”)7 (m + 17”)]7T1(P9) = TQ(PS)'

r1(Ps) =0 when

r9(Ps) =0 when

then

?

then

Let
r3(Ps) = R(m — 1,n) — R(m + 1,n) = r1(Ps) 4+ r2(Ps).
BecausePs,[(m — 1,n), (m + 1,n)] satisfies
r3(Pg,) = ri(Pg,) + r2(Ps,) =0,
the following results are: it (P5) < 0, thenry(Ps) > 0,

else, ifry (P},) > 0, thenry(P) < 0.
Thus, P;[(m — 1,n),(m + 1,n)] should be between

PZo[(m.n). (m + 1,n)] and P2 [(m — 1, ), (m, ).
Now, observeR(m + 1,n) andR(m — 1,n):
R(m,n) = Cy - (Y/P)™ - (1= {/Py=™

+ CrrrLL-l—l . ( m/PS)m+1 . (1 _ m/PS)nferl
+ O (VP
(L= ¥ P)+C-(VP)",

R(m +1.m) = Clpy - (/P (1= /By
e Cny (/P
(L= /P + O (R

Rm = 1,m) = Cpy_y - ("Bt (1= m/Poyrm
+ O (TP
(1= "R+ (YR

r1(Ps) has a positive terl@”, _, - "~/Pq-(1— ™~/P,)"~™m+!

but 73(P,) has 2 positive termg” _, - "/P,™ 1 . (1 —
m,—\l/E)nf’rrL%»l anngl - P (1 _ T/E)nfm_
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TABLE 1l
Q10 FORn = 10 — 84

N ratio=2
2 0.999999
3 0.999918
4 0.999912
5 0.999576
6 0.999511
7 0.997415
8 0.997146
9 0.991069

10  0.990409

11 0978

12 0.976

13 0957

14  0.955

15 0.926

16 0.925

17 0.885

18 0.883

19 0.838

20 0.831
21 0.784
22  0.776
23 0.726
24 0.713
25 0.657
26  0.647
27  0.589
28 0.584
29 0.525
30 0.521
31 0463
32 0.458
33 0.403
34 0.394
35 0.351
36 0.345
37 0.296
38 0.296
39 0.216
40 0.235
41 0.215
42  0.206
43 0.176

N ratio = 2
44 0.170
45 0.145
46 0.139
47 0.121
48 0.118
49 0.0974
50 0.0930
51 0.0787
52 0.0781
53 0.0625
54  0.0584
55 0.0478
56  0.0452
57 0.0390
58 0.0366
59 0.0312
60 0.0293
61 0.0245
62 0.0228
63 0.0195
64 0.0179
65 0.0152
66 0.0140
67 0.0107
68 0.0103
69 0.0097
70  0.0069
71 0.0063
72  0.0054
73 0.00537
74 0.00454
75 0.0039
76  0.0033
77  0.00266
78 0.0028
79 0.00199
80 0.00191
81 0.00157
82 0.00141
83 0.00103
84  0.00098

IEEE TRANSACTIONS ON RELIABILITY, VOL. 52, NO. 3, SEPTEMBER 2003

number precision. Because the precision bound of Mathematica
is 10~ the intersectionP*[(m, n), (m — 1,n)] is not listed
here whenR(m,n) > 1 — 10~ (because the estimation can
not be obtained using this simulation). In [5], the sub-channels’
number used in parallel communication is 84. (Note: There is
no intersection when = 1,2,3.)
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