
J. Parallel Distrib. Comput. 64 (2004) 191–200

ARTICLE IN PRESS
$This work w

of Taiwan, ROC

registered trade

trademark of A
�Correspond

E-mail addr

0743-7315/$ - se

doi:10.1016/j.jp
Protecting network users in mobile code systems$

Shiuh-Pyng Shieh� and Wen-Her Yang

Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC

Received 14 January 2000
Abstract

Conventional access control mechanisms are rather insensitive to occurrences of context-dependent illegal accesses. Insensitivity

to context-dependent accesses may lead to failure to protect network users and resources. Context-dependent illegal accesses

resulting from data and privilege flows in open networks cannot be prevented by either authentication or access control mechanisms

since unauthorized access need not be attempted. In this paper we present a protection model which tracks data and privilege flows

in mobile code systems. It can uniformly define various types of illegal access patterns and has the advantage of preventing context-

dependent illegal accesses such as those caused by inadvertent execution of remote mobile code containing viruses or Trojan Horses.

The proposed flow control model is expected to complement the conventional model for access control.

r 2003 Elsevier Inc. All rights reserved.

Keywords: Mobile code; Remote execution; Java; Internet security; World Wide Web; Access control; Flow control
1. Introduction

With the rapid growth of the Internet, many services
are provided to help network users to access remote data
and code. The development of World Wide Web
(WWW) combines many traditional services and allows
users to navigate the entire Internet using a single Web
browser [Bern94]. As users are expecting more and more
new features, many extensions to the standard World
Wide Web interface are introduced. An extension to
WWW for distributing applications involves ‘‘mobile
code’’—code that can be transmitted across the network
and executed on the other end. The JavaTM language is a
simple, object-oriented, portable, robust language that
supports mobile codes [Flanagan96,Gosling95,Goslin-
g96,Hot96]. Java augments the present WWW capabil-
ities by dynamically downloading the mobile code
fragments, called applets, and running these code
fragments locally. Since the mobile codes are trans-
mitted across insecure networks from possibly untrusted
sources and executed in the local browser, it raises
as supported in part by the National Science Council

, under Contract NSC-85-2213-E-009-032. JavaTM is a

mark of Sun Microsystems. UNIXTM is a registered

T&T.

ing author. Fax: +886-3572-4176.

ess: ssp@csie.nctu.edu.tw (S.-P. Shieh).

e front matter r 2003 Elsevier Inc. All rights reserved.

dc.2003.09.008
serious security issues [Dean96]. Therefore, in the design
of mobile applications on the Internet, the security
problem is considered to be an important one. No one
wants to bring across any piece of code if there is a
possibility that executing the code could (1) damage any
hardware, software, or information on the host
machine, (2) pass unauthorized information to anyone
[Yellin95].
Both authentication and access control can help

protect network users in the World Wide Web
[Shieh96,Shieh97a,Shieh99]. However, access control
mechanisms are rather insensitive to occurrences of
context-dependent illegal accesses. Context-dependent
illegal accesses may arise from a sequence of authorized
executions that exploit security weaknesses of mobile
code systems. For example, inadvertent execution of a
mobile code containing Trojan Horse, modification of
local users’ sensitive object, and disclosure of sensitive
data to remote users. Insensitivity to context-dependent
accesses may lead to failure to protect network users and
resources. Context-dependent illegal accesses resulting
from data and privilege flows in open networks cannot
be prevented by either authentication or access control
mechanisms because unauthorized direct access need
not be attempted. Here, data and privilege flows are
generally caused by primitive system operations, for
example, users access files and execute programs. The

ARTICLE IN PRESS

execute mobile code mobile code

secret data

download mobile code

transmit data

indirect disclosure of secret data

read secret data

untrusted serverWeb browser

Fig. 1. Indirect disclosure of secret data.

S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200192
formal definition of data and privilege flows is given in
Section 3. Since access control mechanisms do not track
data and privilege flows between subjects (e.g., users and
processes) and objects (e.g., files and memory segments),
many illegal accesses cannot be prevented when the
access patterns include sequences of accesses in which
both the size of the subject and object sets and the length
of the sequence itself vary in time. This limitation is
shared by access control methods that ignore the
meaning and significance of event sequences in defining
illegal access patterns. After-the-fact some flow models
[Denning76,Denning77,Landwehr81] and audit analysis
[Shieh97b] have been used to detect this type of
intrusions. However, all of them are unable to provide
immediate, real-time protection.
The current Java security manager protects the users’

system resources by using access control list (ACL)
[Yellin95]. The users can configure each ACL in the
browser to specify what resource access are permitted or
denied. To ensure the security of the local user and host,
the Web browser has to limit the access to system
resources such as the file system, the CPU, the network,
and the graphics display. Otherwise, a malicious hacker
who wrote the mobile code could read or write the user’s
personal files, send anonymous mails to other hosts,
introduce viruses, or crack the local host [Cert96a,-
Cert96b]. Conventional access control mechanisms limit
the access of a process to a file. This will not be effective
in mobile code systems where a mobile code may
contain Trojan Horses. For security reasons, an
unsigned Java applet in Netscape browser is currently
not permitted to access files, and it is only allowed to
communicate with the server from which the applet is
downloaded. However, these restrictions limit the
capability of mobile code systems and the resource
sharing among network users. Under these restrictions,
many jobs cannot be accomplished using Java applets,
which is undesirable. Therefore, a new scheme is needed
for network users in mobile code systems to protect
themselves, and at the same time to share resources.
In this paper, we propose a protection model for

mobile code applications, which captures the dynamic
flows of data and privileges, thereby enabling the
definition and prevention of specific illegal access
patterns. The operations on the subject/object are
permitted if the flows are allowed. This model can
address context-dependent illegal accesses resulting
from unintended execution of Trojan Horses, and
inadvertent propagation of data and code fragments.
It monitors privilege and data flows in a mobile code
network system, and is expected to complement, not
replace, current access control mechanisms.
This paper is organized as follows. In Section 2, we

present illegal data and privilege flows resulting from
sequences of actions in mobile code systems that help
motivate the flow control approach to network user
protection. Section 3 contains a succinct definition of the
data and privilege flows and their salient properties. In
Section 4, we will formally describe the flow control
model. Based on the model, various types of illegal
access patterns are uniformly defined and prevented in
Section 5. Finally, we give the conclusions in Section 6.
2. Security problems in mobile code systems

The problems of illegal data and privilege flows arise
from complex interactions between the pieces of mobile
codes, objects (e.g., files and memory segments) and
network users, such as illegal write over sensitive files
while executing a mobile code that contains Trojan
Horses, or propagation and disclosure of sensitive data.
These problems affect the mobile code systems employ-
ing access controls, and may be caused by both
privileged, administrative users and unprivileged, casual
users. In this section, we present three types of security
problems leading to context-dependent illegal accesses,
and which suggest the use of a data and privilege flows
approach to the protection of network users. The
examples are fairly typical in mobile code systems.

2.1. Modification and disclosure of client’s sensitive data

The following example illustrates the effect of the
execution of a mobile code by an unsuspecting user. A
hacker deliberately leaves a mobile code on a Web server
to attract the attention of network users. An unsuspect-
ing user may download and execute the mobile code.
While executing the code, both the mobile code and the
user who wrote the code can acquire all the unsuspecting
user’s privilege, thereby controlling all his activities and
allowing the hacker to (1) read the unsuspecting user’s
sensitive objects and send them back to the hacker (see
Fig. 1); (2) write over the unsuspecting user’s sensitive
objects (see Fig. 2). For example in the Microsoft
browser (Internet Explorer), if the policy of Java
security is not properly configured, an unsigned Java
applet may acquire the privilege to access file systems.
Consequently, a hacker is able to disclose or modify the
sensitive files through a malicious Java applet. The
unsuspecting user can set access control rules to forbid
the browser to download mobile codes from untrusted

ARTICLE IN PRESS

m

secret data indirect disclosure of secret data

read
secret data

Host h1Host hn

mobile code
m

m

Host hiHost hn-1

Untrusted server

m

Fig. 3. Indirectly cascading disclosure of secret data.

mobile code A mobile code A

mobile code B

download mobile code

indirectly download mobile code

generate a new
mobile code

Alice

mobile code B Web browser
invoked by Chuck

download mobile code

execute

Bob

Fig. 4. Execution of indirectly downloaded mobile code.

execute mobile code mobile code

sensitive file

download mobile code

indirectly write sensitive file

modify
sensitive file

Web browser untrusted server

Fig. 2. Indirectly write over a sensitive file through a mobile code.

S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200 193
servers; however, the problem still exists. For example in
Fig. 3, host hn is not trusted by host h1; the mobile code
m in h1 may travel to other hosts which are trusted by hn:
If the user in hn downloads and executes the mobile code
m from these trusted hosts, then m is able to disclose
user’s secret data to all the hosts where m ever traveled.
In this context, these seemingly normal actions of the
mobile code represent illegal accesses and cannot be
prevented by access control mechanisms.
Although it is possible in JDK (Java Development

Kit) and Netscape to deny an applet’s request to open a
TCP/IP connection back to the server from which it was
loaded, the confinement problem [Lampson73,Lip-
ner75,Saltzer75] still exists in WWW that secret data
may flow outside a protected host (that is, secret data of
a network user may be disclosed to a remote Web
server). For example, a user executes an applet which is
allowed to read secret system data, e.g., the user
password file, and to write some temporary files in the
/tmp directory, but is forbidden making any network
connections back to the server where it was down-
loaded. The applet may write data in the public
directory /tmp and leave it there. Later, the user
executes another applet which can make network
connection back to the server but is only allowed to
read files in the /tmp directory. The execution of this
applet may lead to the disclosure of sensitive data to the
remote hacker who wrote the two applets.

2.2. Inadvertent execution of a mobile code from an

untrusted source

As a third example, we will show that a network user
may execute a malicious mobile code containing Trojan
Horses and consequently controlled by the Trojan
Horses. Limiting accesses to untrusted servers cannot
fully guarantee the security of network users. The Web
server may contain a mobile code migrated from other
hosts, which contains Trojan Horses. For example in
Fig. 4, user Alice creates mobile code A containing a
Trojan Horse on a Web server. User Bob may execute
mobile code A and unbeknownstly generate a new
mobile code, or infect an existing code B. A third user
Chuck, who trusts Bob but does not trust Alice, views
Bob’s Web page and executes mobile code B. Conse-
quently, Chuck is under the control of the mobile code
migrated from Alice. In this example, a Web user may
be indirectly attacked by a remote untrusted server
through a server he trusts. Similar scenarios may appear
on proxy servers. The Web proxy server provides
efficient caching of other Web servers on the Internet.
A proxy server in a firewall protection scheme may also
act as a representative for users behind the firewall to
access the Web. Users rely on the proxy server to access
the Web, but the applets of the original server could
contains a Trojan Horse, which has the ability to access
the users’ system resources indirectly. Thus, an un-
trusted server can access the browser’s resources
indirectly.

2.3. Authorization mechanisms for delegated access

Mobile code systems like WWW use a hypertext
approach to allow users to navigate the entire informa-
tion space, where every piece of information is
connected via links to related pieces of information
[Samarati96]. A user who has access to an object can
activate all links to other objects. In Apache [Apache99]
and NCSA [NCSA95] HTTP servers, it is possible to
restrict access to the information contained in a
directory to specific hosts or authenticated users, and
consequently the traversal will fail if the user does not
have the authorization. This approach does not protect
the relationships between objects. For example, suppose
that a user is permitted to browse directory A but not
directory B: If there exists a file C which is linked to
both directories A and B; the user may indirectly access
directory B via the link file C: To cope with the
authorization problem, Samarati et al. proposed a
model [Samarati96] which takes into consideration the

ARTICLE IN PRESS

Host A (untrusted server)Host B (Web browser)

 d
 os

 pc Uc

 oc

 d

 p

 d
 d

 Us

 d

 d

Us = the hacker
Uc = the user who executes the mobile code
Os = the mobile code created by Us

Oc = secret data
Pc. = the process of executing the mobile code

Fig. 5. Data and privilege flows of the example in Fig. 1.

S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200194
relationships between linked objects, and allows admin-
istrative privileges to be delegated. It is very difficult in
this model to set up a uniform access privilege for users
to access each object through different delegates over
different link paths, because it is a very complex issue to
administrate and unify the access privileges for traver-
sals over different link paths to an object. Inadequate
setting of access privileges to an object may leave trap
doors. Thus, the effect of a seemingly innocuous access
to an object over a path may actually represent an illegal
access.
The above examples show that seemingly innocuous

access patterns may, in fact, represent illegal accesses
whenever they appear in the context of specific sets of

subjects and objects.
3. Data and privilege flows

In this section, we give the definition of data and
privilege flows. The data and privilege flows within a
mobile code system can be represented by a directed
graph which consists of a set of vertices and a set of
labeled edges. The set of vertices consists of subjects and
objects. Here, subjects can be users and processes.
Objects can represent programs, files, directories, etc.
The formal definition of subjects and objects is given in
the next section. Each directed edge ei connects elements
of an ordered pair of vertices fu; vg; and is labeled with
subsets of a finite relation set R; where R ¼ fd; pg:
(When written as labels on a graph, the set braces of
relations are normally omitted.) The basic accesses can
be divided into two types of accesses depending on
whether the accesses cause a flow of data or privilege.
Data flows when read, write, send, and receive opera-
tions are invoked. The data flow from a subject/object vi

to another subject/object vj is denoted by vi !
d

vj : The
privilege flow from subject vi to subject/object vj ; is
denoted by vi !

p
vj; when the former is executing

instructions provided by the latter, that is, vj controls
the execution of vi: Formal data and privilege flow rules
are established by analysis of system level operations
(that is, system calls). The following interpretation of
data and privilege flows between subjects/objects are
applicable not only to UNIX but also to other operating
systems.

* read primitive: ðsi reads ojÞ) oj !
d

si

* write primitive: ðsi writes ojÞ) si !
d

oj

* execute primitive: ðsi is executing ojÞ) si !
p

oj

Other primitives can also be interpreted in terms of the
primitives above. For example, sending a message to a
remote process can be interpreted as writing to a remote
process. Indirect flow relations are derived from inter-
action between subjects and objects and their corre-
sponding direct flow relations. The following rules
illustrate how indirect flow relations can be derived
from the invocation of a new direct flow relation.

Rule 1: If oi !
d

oj precedes oj !
d

ok then oi !
d

ok exists.
Note that if oi !

d
oj succeeds oj !

d
ok then oi !

d
ok does

not hold.
Rule 2: If si !

p
oj and si !

d
ok appear simultaneously,

then oj !
d

ok exists.
For example, if user si executes a program oj to writes

some data to a file ok; then there is an implicit data flow
from oj to ok:

Rule 3: If oi !
d

oj precedes sk !
p

oj then sk !
p

oi exists.
Note that to capture data flow dependencies among

subjects and objects, the specific sequencing of flow
relations must be included. For example, if process 1
writes a file before process 2 reads it, process 1 has a data
flow relation with process 2. However, if process 1 writes
the file after process 2 reads it, no data flow relation can
be established between the two processes.
According to the definition above, we can derive the

data and privilege flows of the example in Fig. 1, which
is depicted in Fig. 5. When a remote user Uc executes the
mobile code, an implicit data flow oc !

d
os is obtained

between secret data Oc and mobile code Os: In the
following section, we propose a flow control model to
detect all the data and privilege flows, including explicit
and implicit. If the detected flows do not violate the
rules of access control, then the action caused the flows
is allowed, else it is denied.
4. The flow control model

In this section, we provide a succinct definition of the
flow control model by formally defining protection
states, and state transitions. The protection state for
flow control is defined by a five tuple ðS;O;Df ;Pf ;FÞ;
where:

* S is a set of subjects, which are the active entities of
the model. Subjects can initiate operations and pass
data and privileges, and can represent processes and
users.

ARTICLE IN PRESS
S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200 195
* O is a set of objects, which are the passive entities of
the model. Objects can represent memory segments,
programs, files, directories, etc. Subjects can also be
considered as objects, that is SDO:

* Df is a collection of subject sets. Df ½o
 represents the
set of the subjects that have data flows into object o:

* Pf is a collection of subject sets. Pf ½s
 represents the
set of the subjects that take the privilege of subject s:

* F is a flow control matrix, with rows corresponding
to subjects and columns to objects. An entry F ½s; o

lists the access privileges of subject s for object o; and
F ½s; o
Dfdout; din; p;Owng:
The flow control matrix F defines the flow policy of the
mobile code system. An entry F ½s; o
 lists the legal data
and privilege flows between s and o: Note that the flow
control policy may not be transitive or symmetric,
because it is common that the flow policy allows the
flows from a to b; and b to c; but not a to c; or b to a:We
will use the flow control matrix F to distinguish an
illegal access from a legal access, where an access is legal
if the incurred flows are permissible by F : The legal-flow
policy enforced by F is similar to discretionary and
nondiscretionary access control policies. The latter only
defines legal direct flow of data and privileges, while the
former defines both legal direct and indirect flows of
data and privileges. A flow violation occurs when an
access incurs flows that violate the given restriction of
data and privilege flows; consequently the access should
be rejected. For example, an indirect data flow from a
remote user to a local system command violates F and
thus is illegal.
The purpose of the flow control policy is to control

the flows of data and privilege. That is, we need to
control the three types of flows: (1) dout—data flows out
of an object, (2) din—data flows into an object, and (3)
p—privilege flows out of a subject. Changes to the
protection state are modeled by a set of commands
which appear in the execution of mobile codes.
Commands are specified by a sequence of primitive
operations that change the flow control matrix, as well
as data and privilege flows between subjects and objects.
These operations are conditioned on the presence of
certain privileges in the flow control matrix and are
controlled by a monitor responsible for managing the
protection state. Their effect on the protection state is
formally defined in Table 1. Let op be a primitive
operator, and Q ¼ ðS;O;Df ;Pf ;FÞ be the protection
state. The execution of op in state Q causes a transition
from Q to the state Q0 ¼ ðS0;O0;Df 0;Pf 0;F 0Þ under the
conditions defined in Table 1. This is written as QjopQ0

(read ‘‘Q derive Q0 under op’’). Next, we will discuss the
commands used in defining the flow control policy.
Any subject may create a new object. The subject

creating an object is automatically given ownership of
the object, din-flow and dout-flow rights to the object.
This is represented by the command:
command create:objectðs; oÞ

create object o;

enter Own into F ½s; o
;

enter din into F ½s; o
;

enter dout into F ½s; o
;
Any user may create a new subject. The execution of
the newly created subject is controlled by the creating
user. For example, a user s may create a process s0: The
process inherits the user’s rights and its execution is
controlled by the user. Thus, we have a privilege flow
from user s to process s0: This is represented by the
command:

command create:subjectðs; s0Þ

create subject s0;

enter s into Pf ½s0
;

8oAO; if OwnAF ½s; o
; enter Own into F ½s0; o
;

8oAO; if dinAF ½s; o
; enter din into F ½s0; o
;

8oAO; if doutAF ½s; o
; enter dout into F ½s0; o
;

8oAO; if pAF ½s; o
; enter p into F ½s0; o
:
The process owning an object can confer any right
(except ownership) to other processes. For example,
dout-flows may be conferred by process s1 on process s2
with the command:

command confer:doutðs1; s2; oÞ

if Own in F ½s1; o

then enter dout into F ½s2; o

(Similar command confers din-flows.)
A user can also confer the right of a process to an

object to control its execution. For example, p-flows of
process s0 may be conferred by user s to object o with the
command:

command confer:pðs; s0; oÞ

if Own in F ½s; s0

then enter p into F ½s0; o

The owner of an object may revoke flow rights to the
object. Commands for removing access rights from the
flow control matrix are similar to those for conferring
rights; for example, process s1 may revoke dout-flow with
the command:

command revoke:doutðs1; s2; oÞ

if Own in F ½s1; o

then delete dout from F ½s2; o

(Similar command revokes din and p-flows.)

ARTICLE IN PRESS

Table 1

Primitive operations

Op Conditions New state

Enter din into F ½s; o
 sAS S0 ¼ S; O0 ¼ O; Pf 0 ¼ Pf ; Df 0 ¼ Df

oAO F 0½s; o
 ¼ F ½s; o
,fding
F 0½s1; o1
 ¼ F ½s1; o1
; ðs1; o1Þaðs; oÞ

Enter dout into F ½s; o
 sAS S0 ¼ S; O0 ¼ O; Pf 0 ¼ Pf ; Df 0 ¼ Df

oAO F 0½s; o
 ¼ F ½s; o
,fdoutg
F 0½s1; o1
 ¼ F ½s1; o1
; ðs1; o1Þaðs; oÞ

Enter p into F ½s; o
 sAS S0 ¼ S; O0 ¼ O; Pf 0 ¼ Pf ; Df 0 ¼ Df

oAO F 0½s; o
 ¼ F ½s; o
,fpg
F 0½s1; o1
 ¼ F ½s1; o1
; ðs1; o1Þaðs; oÞ

Enter s0 into Df ½o0
 s0AS S0 ¼ S; O0 ¼ O; Pf 0 ¼ Pf

o0AO F 0½s; o
 ¼ F ½s; o
; sAS; oAO

Df 0½o0
 ¼ Df 0½o0
,fs0g
Df 0½o
 ¼ Df 0½o
; oao0

Enter s1 into Pf ½s2
 s1; s2AS S0 ¼ S; O0 ¼ O; Pf 0 ¼ Pf

F 0½s; o
 ¼ F ½s; o
; sAS; oAO

Pf 0½s2
 ¼ Pf ½s2
,fsg1
Pf 0½s
 ¼ Pf ½s
; sas2

Create subject s0 s0eS S0 ¼ S,fs0g; O0 ¼ O,fs0g
F 0½s; o
 ¼ F ½s; o
; sAS; oAO

Pf 0½s
 ¼ Pf ½s
; sAS

Df 0½o
 ¼ Df ½o
; oAO

F 0½s0; o
 ¼ f; oAO0

F 0½s; s0
 ¼ f; sAS0

Pf 0½s
 ¼ f; Df 0½s
 ¼ f

Create object o0 o0eO S0 ¼ S; O0 ¼ O,fo0g
F 0½s; o
 ¼ F ½s; o
; sAS; oAO

Pf 0½s
 ¼ Pf ½s
; sAS

Df 0½o
 ¼ Df ½o
; oAO

F 0½s; o0
 ¼ f; sAS

Df 0½o0
 ¼ f

Destroy subject s0 s0AS S0 ¼ S � fsg; O0 ¼ O � fog
F 0½s; o
 ¼ F ½s; o
; sAS0; oAO0

Pf 0½s
 ¼ Pf ½s
; sAS0

Df 0½o
 ¼ Df ½o
; oAO0

Destroy object o0 o0AO S0 ¼ S; O0 ¼ O � fog
o0eS F 0½s; o
 ¼ F ½s; o
; sAS0; oAO0

Pf 0½s
 ¼ Pf ½s
; sAS0

Df 0½o
 ¼ Df ½o
; oAO0

S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200196
The flow rights may be changed if action read is
invoked which causes a dout-flow of data. For example,
the action that subject s reads object o not only causes
new data flow into the subject but also changes the flow
rights of the subject for other objects. In this example,
the flow rights associated with the object can propagate
along with the data, and can affect the flow rights of the
subject invoking the action. This is represented by the
command:
command action:readðs; oÞ

if s reads o
then
 8s0ADf ½o
; enter s0 into Df ½s
;

8s0AS;
if doutAF ½s0; s
 but douteF ½s0; o

then delete dout from F ½s0; s

end
The invocation of action execute may cause new
privilege flows. For example, the action that subject s

executes object o causes new privilege flows into the
subjects which have data flows into object o: This is
represented by the command:

ARTICLE IN PRESS
S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200 197
command action:executeðs; oÞ

if s executes o
then 8s0ADf ½o
; enter s0 into Pf ½s

end
The invocation of action write may cause new
privilege flows and change flow rights. For example,
the action that subject s writes object o not only causes
new data flows into the objects but also changes the flow
rights of object o: This is represented by the command:
command action:writeðs; oÞ

if s writes o
then
 8s0ADf ½s
 or Pf ½s
; enter s0 into Df ½o

8s0AS;
if doutAF ½s0; o
 but douteF ½s0; s

then delete dout from F ½s0; o

end
4.1. Enforcing a flow control policy

A flow control policy, which specifies the legal flows
of a system, is expected to cooperate with access control
mechanisms to ensure security of mobile code network
systems. For example, in Word Wide Web systems, the
flow control policy can be enforced in access control unit
of Java virtual machine to prevent Web browsers from
executing malicious Java applets. An access is permitted
if the flows caused by the access are legal. The flow
control policy is enforced by validating every user access
for appropriate flow rights. Every object has a monitor
that validates all accesses to that object in the following
manner.
1.
 A subject s requests an access that causes ai-flow to
object o; where i ¼ 1;y; n:
2.
 The protection system presents triplet ðs; ai; oÞ to the
monitor of o:
3.
 The monitor looks into the flow rights of s to o:
There are three possible cases:

(1)
 ai ¼ din

If dinAF ½s0; o
8s0ADf ½s
; thentheflowispermitted;

elseitisdenied:
(2)
 ai ¼ dout

If doutAF ½s; o
; then the flow is permitted; else it is denied:
(3)
 ai ¼ p

If pAF ½s; s0
8s0ADf ½o
; then the flow is permitted;

else it is denied:
4.
 If all ai-flow, where i ¼ 1;y; n; are permitted, the
access is permitted.
In order to validate the legality of each user access, the
flow control policy may cause lots of flow specifications
that incur extra system load. For some systems with low
computation power, this system overhead may be not
affordable. Therefore, the proposed flow control model
is recommended for the systems with high security
requirement.

4.2. Implementation consideration

Direct implementation of the flow control matrix F as
a two-dimensional structure is generally impractical due
to the sparseness of the matrix. Instead, F can be
implemented as a set of flow control lists (FCLs).
Alternatively, it is possible to implement F as a set of
rules which define either legal or illegal flows between a
given subject (or group of subjects) and a given object
(or group of objects), such as a rule that prohibits the
privilege flow from any superuser process to remote
users, a rule that prohibits the data flow from remote
users to a user’s sensitive files. In this paper, we will only
investigate the flow control lists.
We can specify object oi which can be known by

authorized users in the Flow Control List

ððU1;F1Þ; ðU2;F2Þ;yÞ; where Fi is the set of flow rights
that user Ui has to access oi: There are three kinds of
flow rights dout; din; and p; that is, FiDfdout; din; pg: If a
flow is incurred that is beyond the flow control lists, a
security violation occurs. A variant of the flow control
list is defined as follows. Let dout½oi
; din½oi
; and p½si

represent respectively the set of users who are authorized
to have data flow out of oi; the set of users who are
authorized to have data flow into oi; the set of users who
are authorized to take privilege from si (that is, the set of
user who are authorized to control the execution of si).
Let Df ½oi
 and Pf ½si
 represent respectively the set of the
users who had data flows into object oi; the set of users
who take privilege from si (that is, the set of users who
currently control the execution of si).
The action that process pi of user Ui reads object oi

causes not only new data flows into the process but also
the change of flow rights of the process for other objects.
If the flows are legal, that is, UiAdout½oi
; the action is
permitted. In this context, the FCL associated with the
object can propagate along with the data, and can affect
the FCLs of other processes and objects that accept the
data. The read action can be represented by the
command:

command action:readðUi; pi; oiÞ

if pi reads oi
then

Df ½pi
 ¼ Df ½pi
,Df ½oi
; and
dout½pi
 ¼ dout½pi
-dout½oi

end

ARTICLE IN PRESS
S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200198
In the command, Df ½pi
 ¼ Df ½pi
,Df ½oi
 means that
foreign data has flowed into the process, and dout½pi
 ¼
dout½pi
-dout½oi
 means that the data flowed into the
query should have at least the same protection as the
object from which the data was captured.
The flow rights may also be changed if a process pi of

user Ui invokes a write action which causes direct and
indirect flows of data into an object oi: If oi is not a
subject and Df ½pi
,Pf ½pi
Ddin½oi
; the flows are legal
and the action is permitted. Or if oi is a subject owned by
user Uj and UjAdout½pi
; the flows are legal and the
action is permitted. The execution of action write may
cause both new flow of data, and change of flow rights.
For example, the action that process pi of user Ui writes
object oi not only causes a new data flow into the object
but also changes the FCL of object oi: This is
represented by the command:

command action:writeðUi; pi; oiÞ

if pi writes oi
then Df ½oi
 ¼ Df ½oi
,Df ½pi
,Pf ½pi
; and
dout½oi
 ¼ dout½pi
-dout½oi

end

In the command, Df ½oi
 ¼ Df ½oi
,Df ½pi
,Pf ½pi

means that foreign data has flowed into the object,
and dout½oi
 ¼ dout½pi
-dout½oi
 means that the data
flowed into the object should have at least the same
secrecy level as the object from which the data was
captured. The flow rights will not be changed if a
process invokes an execute action which causes direct
and indirect flows of privilege into an object. If the flows
are legal, that is, Df ½oi
Dp½si
; the action is permitted.
This is represented by the command:
command action:executeðUi; pi; oiÞ

if pi executes oi
then Pf ½pi
 ¼ Df ½oi
,fUig

end
In the command, Pf ½pi
 ¼ Df ½oi
,fUig states that
the execution of the process pi is controlled by its owner
Ui and the users who wrote the code.
5. Applications of the model

The access patterns that need to be analyzed for flow
control purposes should be characterized in terms of
direct accesses and sequences of accesses between
subjects and objects. We can use the flow control list
to discriminate between an illegal access and a legal
access. An illegal access occurs when the access violates
the given restriction of data and privilege flows, defined
by the flow control list. In the appendix, we will show
applications of the model to prevent several types of
illegal accesses: the inadvertent modification and dis-
closure of sensitive data, as well as the inadvertent
execution of mobile codes.
Virus can spread rapidly through networks. Once

getting into a host, it duplicates itself, seeks files that it
can infect, and spreads to other hosts through computer
networks. The model can be used to determine whether
a host has not been infected by a virus which comes
from remote host through networks or not. Herein, we
say that a host is infection-free if there is no virus that
spreads from remote hosts to the host through net-
works. It is, however, difficult to identify viruses. We
choose to solve the problem in a strict sense, that is, if
there is no data flow from remote hosts to the object of a
host, the site is infection-free. To be infection-free, a
process cannot copy (read and then write), or write
while executing a remote mobile code. In the case that a
host is infected, it is possible, with the data and privilege
model, to identify the origin of the virus.
6. Conclusions

Conventional access control mechanisms are not
effective against context-dependent illegal accesses in
mobile code systems. In this paper we investigate the
context-dependent attacks and present a flow control
model which tracks data and privilege flows, and can
uniformly define various types of illegal access patterns.
Direct implementation of the flow control matrix as a
two-dimensional structure is generally impractical due
to the sparseness of the matrix. To realize the flow
control mechanism, we adopt the same ideas as those
used in constructing access control mechanisms, and
propose an efficient construction of the flow control
lists. The proposed flow control mechanism can be
integrated with access control mechanisms to provide
better security.
Appendix A

Here, We describe how the proposed model
can prevent several types of illegal accesses: the
inadvertent modification and disclosure of sensitive
data, as well as the inadvertent execution of mobile
codes.

A.1. Inadvertent modification of sensitive data

Consider the example given in Fig. 2. A process pc of
an unsuspecting local user Uc inadvertently downloads
and executes a mobile code os written by a remote user
Us: Both the mobile code and the remote user can

ARTICLE IN PRESS
S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200 199
acquire the invoker’s privilege, thereby controlling all its
activities and allowing the remote user to indirectly
write over the unsuspecting user’s sensitive objects oc:
Consequently, the remote user may modify the
unsuspecting user’s sensitive object through the
mobile code. Table 2 gives the reasons why an action
is accepted or rejected, as well as the new flows
caused the action if it is accepted. In the example, to
prevent the indirect damage by the remote user, the flow
control list must be set such that Usedin½oc
 (that is,
dineF ½Us; oc
). In this way, the action action:writeðps; ocÞ
that causes the illegal flow—Us into Df ½oc
—can be
rejected.

A.2. Inadvertent disclosure of sensitive data

Consider the example in Fig. 1. A remote user Us may
deliberately leave a mobile code os on a Web server to
attract the attention of network users. Subsequently, an
unsuspecting user Uc downloads and executes the
mobile code. While executing the code, the remote user
who wrote the code can acquire all the invoker’s
privilege to read the unsuspecting user’s sensitive object
oc and send it back to himself. Consequently, the remote
user may acquire the unsuspecting user’s sensitive file
through the mobile code. In this context, these
seemingly normal actions of the mobile code can be
prevented by the flow control mechanism. Table 3 gives
the reasons why an action is accepted or rejected, as well
as the new flows caused the action if it is accepted. In the
example, to prevent the indirect disclosure of
Table 2

Preventing indirect damage to sensitive objects

Sequence of actions Result Reason Cause new flows

Initially, Df ½os
 ¼ fUsg
Df ½oc
 ¼ fUcg;
Pf ½pc
 ¼ fUcg

action:executeðpc; osÞ; Accepted UsAp½pc
 Pf ½pc
 ¼ fUc;Usg
action:writeðpc; ocÞ; Rejected Usedin½oc

Table 3

Preventing indirect disclosure of sensitive information

Sequence of actions Result

Initially,

action:executeðpc; osÞ; Accepted

action:readðpc; ocÞ; Accepted

action:writeðpc; ocÞ; Rejected
sensitive object oc to the remote user, the flow control
list must be set such that Usedout½oc
 (that is,
douteF ½Us; oc
). Although initially the process pc

executing mobile code os is allowed to have outward
flow, that is, dout½pc
 ¼ U : However, as a result of the
sequence of actions, dout½pc
 is affected by dout½oc
: When
pc accepts the data from oc; dout½pc
 ¼
dout½pc
-dout½oc
 ¼ fUcg: In this way, the action
action:writeðpc; psÞ that causes the illegal direct flow
from pc to Us; and the illegal indirect flow from oc to ps

can be rejected.

A.3. Inadvertent execution of a mobile code from an

untrusted source

Now consider the example in Fig. 4, user Alice ðUaÞ
creates mobile code A ðoaÞ containing a Trojan Horse
on a Web server. User Bob ðUbÞ may download and
execute it which furtively generates a new mobile code B
ðobÞ: Eventually, a third user Chuck ðUcÞ views Bob’s
Web page and executes mobile code B, then Chuck is
under the control of mobile code migrated from Alice.
The mobile code B may disclose Chuck’s secret
information ðocÞ to Alice or modify his sensitive data.
In the example, the flow control mechanism can be
applied to resist this kind of intrusions. The reasons
given in Table 4 are similar to the two types of illegal
accesses mentioned above.
Reason Cause new flows

Df ½os
 ¼ fUsg; dout½pc
 ¼ U

Df ½oc
 ¼ fUcg; dout½oc
 ¼ fUcg
Pf ½pc
 ¼ fUcg

UsAp½pc
 Pf ½pc
 ¼ fUc;Usg
UcAdout½oc
 Df ½pc
 ¼ fUcg

dout½pc
 ¼ fUcg
Usedout½pc

Table 4

Preventing inadvertent execution of a mobile code

Sequence of actions Result Reason Cause new flows

Initially, Df ½oa
 ¼ fUag
Df ½ob
 ¼ fUbg
Pf ½pb
 ¼ fUbg;
din½ob
 ¼ fUa;Ubg
p½pc
 ¼ fUb;Ucg

action:executeðpb; oaÞ; Accepted UaAp½pb
 Pf ½pb
 ¼ fUa;Ubg
action:writeðpb; obÞ; Accepted UaAdin½ob
 Df ½ob
 ¼ fUa;Ubg
action:executeðpc; obÞ; Rejected Uaep½pc

ARTICLE IN PRESS
S.-P. Shieh, W.-H. Yang / J. Parallel Distrib. Comput. 64 (2004) 191–200200
References

[Apache99] Apache Development Group, Apache modules, http://

www.apache.org/docs/mod/index.html, February

1999.

[Bern94] T. Berners-Lee, R. Calilliau, A. Luotonen, H.F.

Nielsen, A. Secret, The world wide web, Comm.

ACM 37 (8) (August 1994) 77–82.

[Cert96a] CERT Coordination Center, Java implementations

can allow connections to an arbitrary host, CERT

Advisory CA-96.05, ftp://info.cert.org/pub/cert advi-

n.5pt}-

advisories=CA �
96:05:java applet security mgr;March1996:

[Cert96b] CERT Coordination Center, Weaknesses in Java

bytecode verifier, CERT Advisory CA-96.07, ftp://

info.cert.org/pub/cert advisories/CA-96.07.ja-

va bytecode verifier, March 1996.

[Dean96] D. Dean, E.W. Felten, D.S. Wallach, Java security:

from HotJava to Netscape and beyond, Proceedings

of IEEE Symposium on Research in Security and

Privacy, Oakland, CA, May 1996.

[Denning76] D.E. Denning, A lattice model of secure information

flow, Comm. ACM 19 (5) (May 1976) 236–243.

[Denning77] D.E. Denning, P.J. Denning, Certification of pro-

grams for secure information flow, Comm. ACM 20

(7) (July 1977) 504–512.

[Flanagan96] D. Flanagan, Java in a nutshell, O’Reilly & Associ-

ates, Inc., February 1996.

[Gosling95] J. Gosling, H. McGilton, The Java language overview:

a white paper, Sun Microsystems Technical Report,

May 1995.

[Gosling96] J. Gosling, H. McGilton, The Java language environ-

ment, Sun Microsystems, http://java.sun.com/doc/

language environment/, May 1996.

[Hot96] HotJava(tm): the security story, Sun Microsystems,

http://java.sun.com/1.0alpha3/doc/security/securi-

ty.html, 1996.
[Lampson73] B.W. Lampson, A note on the confinement problem,

Comm. ACM 10 (16) (October 1973) 613–615.

[Landwehr81] C.E. Landwehr, Formal models for computer security,

ACM Comput. Surveys 13 (3) (September 1981) 247–

275.

[Lipner75] S. Lipner, A comment on the confinement problem,

ACM Oper. System Rev. 9 (5) (November 1975) 192–

196.

[NCSA95] NCSA httpd Development Team, NCSA httpd,

http://hoohoo.ncsa.uiuc.edu/docs/Overview.html,

July 1995.

[Saltzer75] J.H. Saltzer, M.D. Schroeder, The protection of

information in computer systems, Proc. IEEE 63 (9)

(September 1975) 1278–1308.

[Samarati96] P. Samarati, E. Bertino, S. Jajodia, An authorization

model for a distributed hypertext system, IEEE Trans.

Knowledge Data Eng. 8 (4) (August 1996) 555–562.

[Shieh96] Shiuh-Pyng Shieh, Wen-Her Yang, An authentication

and key distribution system for open network systems,

ACM Oper. Systems Rev. 30 (2) (April 1996) 32–42.

[Shieh97a] Shiuh-Pyng Shieh, Wen-Her Yang, An authentication

protocol without trusted party, IEEE Comm. Lett. 1

(3) (May 1997) 1–3.

[Shieh97b] Shiuh-Pyng Shieh, Virgil D. Gligor, On a pattern-

oriented intrusion detection model, IEEE Trans.

Knowledge Data Eng. 9 (4) (August 1997) 661–668.

[Shieh99] S.P. Shieh, C.T. Lin, W.B. Yang, and H.M. Sun,

Digital multisignature schemes for authenticating

delegates in mobile code systems, IEEE Trans.

Vehicular Tech. 49 (4) (2000) 1464–1473.

[Yellin95] F. Yellin, Low level security in Java, Fourth Interna-

tional World Wide Web Conference, Boston, MA,

World Wide Web Consortium, http://www.w3.org/

pub/Conferences/WWW4/Papers/197/40.html, De-

cember 1995.

*http://www.apache.org/docs/mod/index.html
*http://www.apache.org/docs/mod/index.html
*ftp://info.cert.org/pub/cert_advisories/CA-96.05.java_applet_security_mgr
*ftp://info.cert.org/pub/cert_advisories/CA-96.05.java_applet_security_mgr
*ftp://info.cert.org/pub/cert_advisories/CA-96.05.java_applet_security_mgr
*ftp://info.cert.org/pub/cert_advisories/CA-96.07.java_bytecode_verifier
*ftp://info.cert.org/pub/cert_advisories/CA-96.07.java_bytecode_verifier
*ftp://info.cert.org/pub/cert_advisories/CA-96.07.java_bytecode_verifier
*ftp://info.cert.org/pub/cert_advisories/CA-96.07.java_bytecode_verifier
*ftp://info.cert.org/pub/cert_advisories/CA-96.07.java_bytecode_verifier
*ftp://info.cert.org/pub/cert_advisories/CA-96.07.java_bytecode_verifier
*http://java.sun.com/doc/language_environment/a4
*http://java.sun.com/doc/language_environment/a4
*http://java.sun.com/doc/language_environment/a4
*http://java.sun.com/1.0alpha3/doc/security/security.html
*http://java.sun.com/1.0alpha3/doc/security/security.html
*http://hoohoo.ncsa.uiuc.edu/docs/Overview.html
*http://www.w3.org/pub/Conferences/WWW4/Papers/197/40.html
*http://www.w3.org/pub/Conferences/WWW4/Papers/197/40.html

	Protecting network users in mobile code systems
	Introduction
	Security problems in mobile code systems
	Modification and disclosure of client’s sensitive data
	Inadvertent execution of a mobile code from an untrusted source
	Authorization mechanisms for delegated access

	Data and privilege flows
	The flow control model
	Enforcing a flow control policy
	Implementation consideration

	Applications of the model
	Conclusions
	Inadvertent modification of sensitive data
	Inadvertent disclosure of sensitive data
	Inadvertent execution of a mobile code from an untrusted source

	References

