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Abstract

To protect a network, secure network systems such as intrusion detection system (IDS) and firewall are often installed to control or monitor

network traffic. These systems often incur substantial delay for analyzing network packets. The delay can be reduced with fast packet

classification, which can effectively classify network traffic, and consequently accelerate the analysis of network packets. In the last few

years, many researchers devoted to providing fast packet classification methods for multidimensional classifier. However, these methods

either suffer from poor performance and huge storage requirement, or are lack of dimension scalability. In this paper, we propose a packet

classification method based on tuple space search, and use the multidimensional binary search tree (Kd-tree) to improve search performance.

The proposed scheme requires only Oðd log WÞ search time and controlled storage requirement, where d is the number of dimensions, and W

is the utmost bit length for specifying prefixes in a classification rule. It features fast packet classification, and supports dynamic update which

is a basic requirement of many secure network services, such as IDS and firewall.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

With the growing demand of network security, many

network security services such as signature-based intrusion

detection system (for instance, Snort [18] and NFR [16])

and firewall are widely deployed in recent years. These

security services typically involve processing and classify-

ing packets to enforce different protection policies. For

example, firewall systems may block any external access to

a ftp server, which is for internal use only; to detect possible

attacks to a web server, intrusion detection system may

search for malicious patterns in the payload of packets with

destination port 80. In these security systems, packet

classification is first executed to determine the filter in a

given classifier database the packet matches, and sub-

sequently the action associated with the matching rule is

performed. Several fields of the packet header are generally

used for defining a filter. For instance, VPN applications

only examine source and destination address fields; firewall

queries source address, destination address, protocol, source

port, destination port, and flags.

Network security services often delay the transmission of

network packets, and consequently degrade the network

performance. Due to the increase of network bandwidth, the

capability of security systems for processing network

packets must be improved accordingly to avoid attacks

being undetected. As demonstrated in Ref. [19], although

very few packets are undetected when the number of rules is

small, the number of undetected packets will increase

drastically when the number of detection rules exceeds the

maximum processing capability of the system. From this

point of view, it is very important to improve the system

capability so as to reduce undetected attacks.

Since the time for searching for a matched filter in the

classifier database is one of the factors that can dominate the

overall performance, it must be reduced as much as possible.

Fast packet classification has been investigated by many

researchers [2,5,8,9,11,12,15,21,24]. These schemes either

suffer from poor search performance, large storage require-

ment, or are lack of dimension scalability. Other schemes

are based on the use of tuple space [22,23,25]. The

performance of these schemes is still not satisfactory

and their storage requirement is large. It is desirable
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to have a new fast packet classification scheme to increase

the throughput of network security services.

In this paper, a packet classification algorithm for

improving the performance of network security services is

proposed. The new packet classification algorithm utilizes

tuple space approach to achieving better search performance

than existing multi-dimensional packet classification algo-

rithms, while requiring only little storage expansion. This

paper is organized as follows. Section 2 describes the details

of the proposed packet classification algorithm and

illustrates it with an example. For applications with frequent

rule updates, we present a method for minimizing the

overhead caused by dynamical update. Section 3 explores

the use of proposed scheme in network-based intrusion

detection systems. Section 4 gives performance evaluation,

complexity analysis and comparison. Finally, the con-

clusion is presented in Section 5.

2. Kd-tree based tuple space search

In this section, a new packet classification algorithm

based on tuple space search is proposed. First, the basic idea

of the proposed tuple space search is presented. Then

notations and data structures are defined. Our scheme

organizes the tuples in the tuple space as a binary search

tree, and accordingly the search algorithm for the binary

search tree is proposed.

The packet classification problem is to find the matching

filters in a given classifier for a packet P: A filter is an

expression that specifies values in the fields of packet header

and the action to perform when a packet matches all

specifications. A filter f is called a d-dimensional filter if it

specifies d fields of the packet header, denoted as

f ½1�; f ½2�;…; f ½d�: Each specification can specify the prefix,

range or exact value in the fields. Note that range

specification can be converted to prefix specification using

Srinivasan’s method [22]. A filter f is said to be a matching

filter for a packet P if P can matches all specifications in f : A

classifier is a database which contains N filters, ranging

between tens and thousands (such as routing table or firewall

rule sets).

It has been observed that while a classifier may have

many filter rules, the number of distinct prefix lengths in the

classifier is usually small. Taking advantage of this feature,

the filters in a classifier are partitioned according to the

combinations of prefix lengths. If filters with the same

combination of prefix lengths are included in the same

group, the number of groups would be much smaller than

the number of filters. For example, consider the classifier in

the traditional router that forwards the packet based on the

destination IPv4 address. The classifier can have utmost 32

groups, regardless of the number of filters. For a two-

dimensional classifier where each filter specifies the prefix

of IPv4 source address and destination address, it can have

at most 1024 groups. However, in this case most of the

groups may not contain any filter.

Given a d-dimensional classifier, each filter maps to a

vector of d integers where the ith integer represents the

prefix length of the ith field in the filter. The vector of d

integers is called a tuple and the set of tuples created by a

classifier is called tuple space. Since filters mapped to the

same tuple have the same number of bits in each field, by

concatenating the prefixes of a filter, we can create a hash

value using the concatenated bit string for each filter. The

hash values are then used to map filters in the same tuple to a

hash table. Specifically, consider a filter f mapped to tuple T

and its hash value of the concatenation of the prefixes is k:

Then, filter f is stored in the kth entry in tuple T’s hash table.

To test if a packet P can match any filters in a tuple T ; a

hash key is created by concatenating the required number of

bits from the packet header fields according to T : Then,

filter(s) indexed by the hash key is compared with the

packet. If the packet matches one of the filters indexed by

the hash value, a matching filter is found. The simplest

search algorithm based on tuple space search is to probe all

the tuples in turn. If each field of a filter is at most W bits,

then in the worst case, this approach requires Wd hashes to

find a best matching fitler in a d-dimensional classifier.

2.1. Definitions

Tuple T is a vector of d integers which are denoted as

T :vec½1�;T :vec½2�;…; T :vec½d�: A filter rule f maps to a

tuple T if and only if ;i; 1 # i # d; prefix length of the ith

field of f is exactly T :vec½i�: All filter rules map to tuple T

are stored in a hash table of T ; and T :ptrHash is a pointer to

locate T’s hash table.

Given a tuple T ; the tuple space can be partitioned into

three disjointed sets, LongerTuple of T ; ShortTuple of T

and IncomparableTuple of T : Consider any two tuples T and

Ta;Ta – T (that is, for some i; Ta:vec½i� – T :vec½i�). Ta is a

tuple in LongerTuple of T if ;i; 1 # i # d; Ta:vec½i� $

T :vec½i�: If ;i; 1 # i # d; Ta:vec½i� # T :vec½i�; then Ta is a

tuple in ShorterTuple of T : Otherwise, Ta is a tuple in

IncomparableTuple of T :

To perform binary search on the tuple space, a binary

search tree using the tuples must be constructed. For this

purpose, each tuple is associated with a SuperKey to

determine its location in the binary search tree. SuperKey of

tuple T is constructed by concatenating all of the ele-

ments in T :vec circularly. A Discriminator is used for

specifying where to start the circular concatenation. Let

SKT :dis denote the SupkerKey of tuple T and discrimi-

nator be dis: Then, SKT :dis ¼ T :vec½dis�T :vec½dis þ 1�;…;

T :vec½d�T :vec½1�T :vec½2�;…;T :vec½dis 2 1�: For example,

SKð3;0Þ:1 ¼ 30 and SKð3;0Þ:2 ¼ 03 Since there are d elements

in T :vec; tuple T can have d possible SuperKeys, each

starting from 1; 2;…; d; respectively.

Since SuperKeys are considered integers, they can be

sorted. As a result, tuples can be sorted using their
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SuperKeys. Given a discriminator dis, Ta is smaller than T if

SKTa:dis , SKT :dis: Otherwise, Ta is larger then T : For

example, Let discriminator be 1, then tuple (3,0) is larger

than tuple (2,2) because SKð3;0Þ:1 . SKð2;2Þ:1 (30 . 22). If

discriminators of all tuples equal to 2, then tuple (3,0) is

smaller than tuple (2,2) because SKð3;0Þ:2 , SKð2;2Þ:2

(03 , 22).

2.2. Construction of Kd-tree

As mentioned in previous sections, filters mapped to the

same tuple are stored in a hash table. Tuples can be viewed

as multidimensional points in tuple space. Many data

structures to organize multidimensional objects are pub-

lished for last three decades, such as Kd-tree [4], KDB-tree

[17], R-tree [13], R þ -tree [20], and R*-tree [3]. Among

these data structures, Kd-tree is a simple method and more

suitable for our need. More information can be found in

recent work [1,6,7,10].

In our scheme, each node of Kd-tree stores a tuple T ;

and two pointers directed to the left and right subtrees. With

the definition in Section 2.1, tuples in the left substree of T are

the tuples smaller than T; tuples in the right subtree of T are

all larger than T : Note that tuples in the left subtree of

T belong to either ShorterTuple or IncomparableTuple of

T : Tuples in the right subtree of T belong to either

LongerTuple or IncomparableTuple of T :

To simplify the illustration of constructing a Kd-tree,

assume that both the source address and destination address

of a packet are three bits and a simple two-dimensional

classifier with only eight filters is given in Table 1. The first

field of each filter specifies the prefix of the destination

address and the second field specifies the prefix of the source

address. Note that ‘*’ means wildcard. For example, ‘10*’

represents all bit strings starting with the first bit ‘1’ and the

second bit ‘0’.

To select the root node for a Kd-tree or a subtree in the

Kd-tree, SuperKeys are created to sort tuples. Tuples are

sorted according to their SuperKeys and then the middle

tuple in the sorted list is selectedas the root node of Kd-tree

or a subtree. Tuples smaller then the selected tuple are

assigned to the descent left subtree and the rest are assigned

to the descent right subtree. Subsequently, to select the root

nodes of the descent left and right subtrees, tuples in the

descent left and right subtree are sorted again using a new

discriminator. In short, ððL mod dÞ þ 1Þ is used as the

discriminator where L means the level of the tree node to be

selected and d represents the dimensions of the classifier.

That is, 1; 2;…; d are circularly selected as the discrimi-

nator. A Kd-tree constructed using the classifier in Table 1 is

depicted in Fig. 1. In this example, the tuples are sorted by

using 1 as discriminator. The sorted list of tuple is (0,2),

(1,2), (1,3), (2,1), (2,2), (3,2), (3,3). The middle tuple (2,1) is

selected as the root node of the Kd-tree. Tuples (0,2), (1,2)

and (1,3) are designated to the left subtree and tuples (2,2),

(3,2) and (3,3) are in the right subtree. Next, let

discriminator be 2, tuples in the left and right subtree are

sorted again. The sorted sequence will be (0,2), (1,2), (1,3)

and (2,2), (3,2), (3,3). Similarly, the middle tuples (1,2) and

(3,2) are selected as the root node of the left and right

subtree, respectively. By repeating this process, a Kd-tree

can be constructed from top to bottom.

Our search algorithm is to perform binary search using

Kd-tree. That is, the search algorithm determines the best

matching filter by traversing the Kd-tree from the root node

to a leaf node. In Section 2.3, a binary search example using

the Kd-tree in Fig. 1 is described and followed by another

example to show that the simple Kd-tree construction is still

not applicable for binary search.

2.3. Search example and mis-judged problem

In this section, a search example is illustrated. A variable

bstMatch is used to record the best matching filter found by

the search algorithm. Consider a packet P with destination

address 010 and source address 100. The pair of destination

and source addresses is represented as (010,100). Given the

classifier illustrated in Table 1 and the Kd-tree in Fig. 1, the

searching steps for determine the best matching filter is as

follows. The search algorithm first probes the root node of

constructed Kd-tree. In this example, tuple (2,1) is the root

node and thus it is probed first. To probe tuple (2,1), two

prefix bits of the destination address and one prefix bit of the

source address are concatenated to construct a hash key. If

there is any filter indexed by the same hash value, (010,100)

is compared to the filter. In this example, the address pair

Table 1

An example classifier

Rule ID Filter rule Mapped tuple

1 (1*,00*) (1,2)

2 (01*,1*) (2,1)

3 (10*,01*) (2,2)

4 (01*,10*) (2,2)

5 (010,00*) (3,2)

6 (101,111) (3,3)

7 (0*,101) (1,3)

8 (*,10*) (0,2)

Fig. 1. Kd-tree for Table 1.
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(010,100) has the same hash value with filter (01*,1*). Since

(010,110) matches the filter (01*,1*), the matching rule

(01*,1*) is stored at bstMatch. Afterwards, since the probe

in tuple (2,1) returns success, the search algorithm probes

the right child, e.g. tuple (3,2). Similar to the way of probing

tuple (2,1), the search algorithm uses three bits of the

destination address and two prefix bits of the source address

to compute the hash value. In this example, the search

algorithm cannot find any matching filter. As a result, the

search algorithm probes the left child node of (3,2) in the

Kd-tree. The search algorithm terminates when it reaches a

leaf node in the Kd-tree and reports the rule stored in

bstMatch as the best matching filter. In this example, the

best matching filter found is (01*,1*).

However, performing binary search using current

Kd-tree construction is problematic in some circumstances.

As an example, assume that a new rule (010,111) is added

and stored in the hash table of tuple (3,3). Consider the

problem of searching a matching rule for packet (010,111).

The packet will match (01*,1*) at (2,1) but fail at both (3,2)

and (2,2). As a result, (01*,1*) will be the best matching

rule; nevertheless, (010,011) is a better matching filter than

(01*,1*). To solve the problem, markers and pre-compu-

tation are included in the proposed scheme. In Section 2.4,

details of the solution are described.

2.4. Proposed packet classification algorithm

The proposed packet classification algorithm essentially

traverses the Kd-tree to find a best matching filter. However,

as illustrated in Section 2.3, the simple construction of

Kd-tree caused the search algorithm to report the false best

matching filter. In this section, the solution to the mis-

judged problem is presented and then the proposed packet

classification algorithm is described.

When the search of a tuple fails, the search algorithm

searches the left subtree and eliminates all tuples in the right

subtree, which may contain the best matching filter. To

avoid this mis-judged problem, each tuple should contain

information of the rules in its right subtree. For example,

tuple (3,2) should have a maker (010,11*) which is

generated by the rule (010,111) in tuple (3,3). In this way,

to find a best matching filter for packet (010,111), the probe

in tuple (3,2) would return success since the search

algorithm can find a matching marker (010,11*). Finally

the search algorithm can find the best matching filter

(010,111) in tuple (3,3).

Let T be a tree node in Kd-tree. Rules of tuple belonging

to LongerTuple of T in the right subtree of T will store a

marker m in T ; where m½i� is the first T :vec½i� bits of the rule.

In addition, each rule in the tuples belonging to Incompar-

able Tuple of T in the right subtree of T will also store

markers at T : After that, a best matching filter for each

maker m is computed from the filters mapped to tuples in

ShortTuple of T : The best matching filter found is stored

with the maker m:

As proved in Lemma 1, the right subtree of a tree node T

in the Kd-tree can be eliminated when no matching filter or

marker is found in T : In contrast, the left subtree cannot be

eliminated directly from the search space. Consider the case

that a matching marker is found in Tuple T : If the marker is

generated by a filter in IncomparableTuple of T ; no better

matching filter can be found in tuples belonging to

IncomparableTuple of T in the left subtree. Otherwise, it

violates the conflict-free assumption. If the best matching

filter is in the tuple belonging to ShortTuple of T ; it has been

pre-computed and stored with the marker. Therefore, if the

matching marker is generated by a filter in a tuple belonging

IncomparableTuple of T ; the left subtree can be eliminated

from the search space. However, if the marker is generated

by a filter in a tuple belonging to LongerTuple of T ; the left

subtree cannot be eliminated from the search space. This is

because a matching filter can still exist in the left substree.

To address this issue, new filters are inserted into the tuple

space as follows. For each marker m in a tuple T and each

filter f in a tuple belonging to IncomparableTuple of T in the

left subtree, if m is conflict with f ; then a new filter rule is

created to resolve the conflict. The new rule is called a

resolver. The resolver is generated by taking the longer

prefixes in each field from m and f : The resolver is then

inserted into the tuple space. It is clear that the resolver will

map to a tuple in the right substree of T : Similar to

the markers, the best matching filter is computed and stored

for each resolver. In this way, as proved in Lemma 2, the left

subtree can be eliminated from the search space without

considering whether there is a best matching filter in it or not.

Fig. 2 shows the pseudo-code for generating the marker. Fig. 3

shows the pseudo-code for pre-compuation and generating

resolvers. The search algorithm on Kd-tree is shown in Fig. 4.

Lemma 1. If packet P does not match any filter or marker at

tuple T,P will not match any filter of the tuple in the right

subtree of T. Consequently, all tuples in the right subtree of

T can be eliminated from search space.

Proof. We prove this lemma by apagoge. If P matches filter

rule f 0 mapping to a tuple T 0 in the right subtree of T ; then P

certainly can match the marker generated by f 0 in T ; which

violates the assumption. A

Lemma 2. If packet P matches a filter rule or marker in

tuple T, all tuples in the left subtree of T can be eliminated

from the search space.

Proof. First, we discuss the case that P matches a filter rule f in

a tuple T : Since all the filters mapped to a tuple in ShortTuple

of T have prefix lengthes shorter than f in all fields, none of

them can be a better matching filter than f and, therefore, all

these filters can be eliminated from the search space. If P can

also match a filter rule f 0 belonging to a tuple in

IncomparableTuple of T in the left subtree, then there is
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a conflict between f and f 0: Due to the conflict-free property,

there is a resolver filter for f and f 0: Consequently the resolver

filter will be the better matching filter than both filters (the

resolver has the information of the best matching filter, f or f 0).

In this case, f 0 can be eliminated from the search space. Hence,

if P matches a filter in a tuple T ; the left subtree form the search

space can be eliminated from the search space.

Second, we discsuss the case that P matches a marker m

generated by a filter rule f : Using precomputation, all

Fig. 3. Precomputation and construction of resolvers.

Fig. 2. Construction of the tuple space and markers.
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the tuples in ShortTuple of T can be eliminated from the

search space.Next, consider all filters mapped to tuples

belonging to Incomparable tuple of T in the left substree. By

definition, if P can match f 0 and m, a resolver is created for

m and f 0: The resolver is a better matching filter than f 0 and

m, and f 0 can be eliminated from the search space.

As a whole, if a matching filter or marker is found in a tuple

T ; the left subtree can be eliminated from the search

space. A

With Lemmas 1 and 2, the proposed packet classification

algorithm can determine a best matching filter in Oðd �

logðWÞÞ hashes, as proved in Theorem 1.

Theorem 1. Given a packet P and the classifier database,

the proposed search algorithm can determine the best

matching filter using only Oðd log WÞ hashes.

Proof. According to Lemma 1 and Lemma 2, the

packet classification algorithm can find the best matching

filter by traversing the Kd-tree from the root node to a

leaf node. Since the height of the Kd-tree is at

most d log W ; the number of hashes required is

OðheightÞ ¼ Oðd log WÞ: A

2.5. Dynamic update

So far, the Kd-tree is constructed using only the non-

empty tuples. This is true for applications that seldom

modify their rule sets. For other applications that frequently

change their rule sets, the overhead for dynamically

updating is crucial and should be minimized.

The insertion (deletion) of a filter rule may require

insertion (deletion) of a new tree node in the Kd-tree, and

results in an unbalanced Kd-tree. This degrades search

performance because the height of the Kd-tree is no

longer Oðd log WÞ: One simple solution is to restructure

the Kd-tree when a tree node is inserted or deleted.

However, the time for restructuring Kd-tree still consti-

tutes significant overhead. To avoid this, all Wd tuples are

used to construct a balanced Kd-tree, i.e. all tuples are

included in the Kd-tree regardless whether the tuple is

empty or not. Since all tuples are always included in the

Kd-tree in the beginning, there is little overhead for

inserting or deleting a tree node.

In this way, the first step for inserting or deleting a rule is

to locate the tuple that the rule maps to. Then, the rule can be

added or deleted from the hash table of the tuple.

Afterwards, markers and resolvers are subsequently created

or removed correspondingly. This approach significantly

reduces the overhead for modifying the rule set.

3. Evaluation and comparison

To evaluate a packet classification algorithm, several

criteria including search and update performance, storage

cost, scalability of dimensions and filter rules, and flexibility

of specifications are examined. In the following context, we

assume that a classifier contains N filter rules; every rule has

d fields/dimensions; each field has at most W bits.

3.1. Complexity evaluation

Search performance is counted on the basis of number of

hashes. Because one tuple is searched by only one hash,

Fig. 4. Search procedure.
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the time is related to height of Kd-tree. Moreover, the total

number of tuples of classifier is Wd tuples. The height of the

multidimensional binary tree of tuples is log Wd or d log W :

As a result, complexity of our method is equal to the height

of a balanced Kd-tree, which is Oðd log WÞ:

Considering storage complexity of proposed method, it

should include cost of filter rules, markers. According to

Section 2, filter rules leave markers. In the worst case, a

filter rule mapped into the right-most leaf tuple has to leave

markers at all tuples in the path from root to its location,

resulting in total d log W 2 1 markers. Therefore, one filter

rule will cost Oðd log WÞ and totally OðNd log WÞ storage

for N filters.

3.2. Experiment on scalability

As the complexity analysis shown in Section 3.1, the

proposed scheme can achieve almost constant search time

while retaining feasible memory requirement. The advan-

tage of the proposed scheme is particularly important when

the number of filters is large. Unfortunately, there is no

public available filter sets. To measure the scalability in

terms of number of filters, several two-dimensional

classifiers are constructed. Each filter in the classifiers

specifies the source address and destination address and the

address prefixes are randomly selected from the routing

table snapshot of Mae-West NAP at March 15, 2002 [14].

In the experiment, the Kd-tree is constructed using only

non-empty tuples. Performance with regard to the variation

of filter rule number is showed in Fig. 5, where x-axis

represents the number of filter rules, and y-axis gives the

performance, in terms of number of hashes.

The curve shows that the number of hashes required to

find the best matching filter grows slowly with respect to

the increasing size of the classifier and ultimately reaches

an upper bound. This is because for large classifiers, many

filter rules are mapped to the same tuple and the cost for

probing a tuple is constant. When all of the tuples are

included in the Kd-tree, total Oðd log WÞ hashes are

required. In this experiment, as shown in Fig. 5, the upper

bound is 10. (d ¼ 2;W ¼ 32; therefore, ðd log WÞ ¼

2 £ 5 ¼ 10Þ.

Fig. 5. Performance evaluation of proposed Kd-tree based method.

Table 2

Comparison of packet classification algorithms

Evaluation algorithms Lookup time Memory usage Dimension scalability

Linear search on filter rules OðNÞ OðNÞ Unlimited

Grid-of-tries [21] OðWÞ OðNWÞ 2

Cross-producting [21] OðdWÞ OðNdÞ Unlimited

Bit-parallelism [15] OðW log NÞ OðNWÞ 2

Area-based QuadTree [8] OðWÞ OðNWÞ 2

Fat-Inverted segment tree [9] OððL þ 1ÞWÞ OðLNð1þ1=LÞÞ 2

Segment tree with fractional cascading [24] Oðlog NÞ OðN*logNÞ 2

Recursive flow classification [11] OðdÞ OðNdÞ Unlimited

HiCuts [12] OðdÞ OðNdÞ Unlimited

Linear search on tuple [22] OðWdÞ OðNÞ Unlimited

Rectangle search [22] OðWÞ OðNWÞ 2

Binary search [25] Oðlog2 WÞ OðN log2 WÞ 2

Extended Grid-of-Trie [2] OðWÞ OðNWÞ Unlimited

Proposed method Oðd log WÞ OðNd log WÞ Unlimited
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3.3. Comparison

Table 2 shows the comparison of the proposed method

with other packet classification algorithms. Algorithms are

listed in the first column and three evaluation criteria,

lookup time, memory usage, and dimension scalability are

shown in the first row.

First, the lookup time is examined. Most of the

existing schemes have either OðWÞ or OðlogNÞ time

complexity. Four algorithms provide better search

efficiency. Time complexity of RFC [11] and HiCuts

[12] are constant. The binary search scheme [25] has

Oðlog2 WÞ time complexity. RFC and HiCuts have better

time complexity but at the high cost of OðNdÞ huge

memory space requirement. Excluding RFC and HiCuts,

our scheme has the best time complexity Oðd log WÞ

with controlled storage space requirement OðNd log WÞ:

Second, we compare the proposed scheme with the two

schemes, Rectangle search and Binary search, which are all

based on tuple space search. The two schemes can only

applied to two-dimensional classifiers, that is d ¼ 2: The

Rectangle search requires OðWÞ hashes and the binary

search scheme proposed by Warkhede needs Oðlog2 WÞ

hashes. The proposed scheme only requires Oð2 log WÞ

hashes. From the storage perspective, the Rectangle

search requires OðNWÞ and the Binary search requires

OðN*log2 WÞ memory space. In contrast, our scheme only

needs OðN*2*log WÞ memory space.

4. Application

In this section, our scheme is applied to Network-based

IDS (NIDS) to demonstrate its usage. NIDS contains

policies and actions to protect computer or network from

attacks. As shown in Table 3, the policy database is quite

similar to the classifier of a router or a firewall. However, in

addition to source and destination addresses of IP header,

source and destination ports, other fields, such as protocol,

flag, content of packet payload, may be also used in the

policies. As a result, the dimension of the policy database of

a NIDS is much larger than other applications.

IDS Classifier, as depicted in Fig. 6, is an IDS policy

database containing N filter rules, each has d fields. Each

filter can be separated into two parts. The first part contains

fields in the packet header and the second part specifies the

pattern in the packet payload. Header classifier is

constructed using the first part of each filter rules in the

IDS classifier. Let Nh denote the number of distinct filter

rules in the header classifier. Each filter rule, called header

rule, has dh fields.

Although every field of packet header can be included in

a filter rule, only some of them commonly appear in most of

the rules, e.g. destination and source addresses. To reduce

the dimension of a filter rule, only the most common fields

of the IDS filters are used to construct the header classifier.

Thus, our method should be modified as follows.

Unlike original filter rule, header rules derived from IDS

classifier are associated with another two pointers

Table 3

IDS policy database (classifier)

Rule ID Source address Destination address Protocol Source port Destination port Flag Payload content Log message Action

R1 * 10.1.1.0/24 tcp * 79 * * log

R2 * 10.1.1.0/24 tcp * 80 * /cgi-bin/phf PHF probe alert

R3 host A 10.1.1.0/24 tcp * 6000:6010 * * X traffic alert

R4 * 192.168.1.0/24 tcp * 143 * lE8C0FFFF FFl/bin/sh IMAP buffer overflow alert

R5 * 10.1.1.0/24 tcp * 80 PA /cgi-bin/perl.exe? CGI-per.exe probe alert

Fig. 6. Transformation of IDS classifier into Header classifier.

S. Shieh et al. / Computer Communications 27 (2004) 1637–16461644



Rh:ptrRule and Rh:ptrNext: The former pointer directs to

other header rule R0
h if Rh is a subset of R0

h: If Rh is a

subset of more than one header rule, for every additional

rule, two more pointers will be allocated and directed by

Rh:ptrNext; and new ptrRule will point to the additional

header rule, as shown in Fig. 7.

As a result, given a packet P; the search algorithm

first finds the best matching header filter and compares

content of the packet payload with the patterns in the IDS

filters. Then, search algorithm traverses all the filter rules

using the pointers associated with the best matching header

filter. In this way, all the filters in the IDS classifier can be

searched very efficiently.

5. Conclusions

In this paper, a solution to packet classification

problem using Kd-tree for tuple space search is proposed.

Filter rules are grouped into tuples according to their

prefix length and tuples are organized as Kd-tree. Each

time the search algorithm probes into a tuple, either the

left subtree or the right subtree is eliminated. As a result,

the proposed search algorithm requires only Oðd log WÞ

hashes to find a best matching filter for a packet, and the

storage requirement is only OðNd log WÞ:

The way to minimize the overhead for dynamically

updating the rules is discussed. Using all tuples to

construct the Kd-tree completely reduces the overhead

for restructuring the unbalanced Kd-tree. The fast packet

classification method can be used to accelerate many

security services such as IDS. Since IDS classifier uses

many fields to classify packet and only a few fields are

commonly used in the filter rules, we suggest that only the

commonly used fields are used to construct the header

classifier. If a match is found in the header classifier,

patterns related to the matching filter are then examined

sequentially. In this way, the proposed algorithm provides

better performance.
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