
Information Protection in Dynamic Statistical

Databases

Shiuh-Pyng Shieh and Chern-Tang Lin

Department of Computer Science and Information Engineering
National Chiao Tung University

Taiwan, ROC 30010
Tel: +886-3-5731876
Fax: +886-3-5724176

Email: ssp@csie.nctu.edu.tw

Abstract

A statistical database (SDB) is a database that contains sensitive records describing
individuals but only statistical information is available. There are many inference
control methods proposed to protect SDBs. In this article, we will briefly introduce
three general approaches: conception, perturbation, and query restriction approaches.
In addition, six criteria are also introduced to evaluate the features of these
mechanisms. However, in practice, many SDBs are dynamically updated. This feature
restricts the use of many inference control methods. Thus, in the rest of the article, we
will present an efficient audit scheme, which is a query-restriction-based
security-control method for protecting dynamic SDBs. This scheme guarantees the
security of SDBs and needs less time and storage requirements than the traditional
schemes while database systems are dynamically updated.

1. Introduction

A statistical database (SDB) is a database that contains sensitive records describing
individuals but only statistical information is available. SDBs are mainly used for
statistical analysis where only statistical queries, such as SUM, AVERAGE, COUNT
are available and information of individuals cannot be disclosed. SDBs are used in
many applications, such as census data, mortality data, and economic planning. A
typical example of SDB is illustrated in Figure 1. In the SDB, the scores of

individuals should not be disclosed, and therefore AVERAGE(ID = 1, Score), the
average score of students with ID 1, is an illegal query. But statistical queries, such as

COUNT(ALL) and AVERAGE(Address=“New York”, Score) are legal. Although
users are only allowed to access the statistical information from an SDB, they can
infer the confidential individual information by invoking a series of legal queries.
When any confidential information is disclosed, the SDB is compromised. For

example, both AVERAGE(Address = “New York”, Score) and AVERAGE(Dept. =

“C.S.”, Score) are legal queries. A user can infer the confidential information (the
score of ID 3) by computing the difference between these two queries. If both queries
are answered, the SDB will be compromised. Therefore, the SDB should deny one of
the two queries to protect the individual information.

Figure 1. A statistical database

ID
1
2
3
4

Gender
F
M
M
F

Address Dept.
C.S.
M.E.
C.S.

Score
82
75
71
83

New York

New York

Washington
Washington

C.S.

In practice, many SDBs are dynamic. That is, the individual records of an SDB need
to be inserted, deleted and updated dynamically to keep statistical information fresh. A
user may infer confidential information from the updates of a dynamic SDB. For

example, when invoking the query AVERAGE(Gender = “M”, Score) before and
after inserting a new record with gender “M” into the SDB shown in Figure 1, the
invoker can infer the new record's score from the change of the answers. Therefore,
not only the old and the new values of an individual, but also the change of an SDB
should be protected. Thus, the whole database needed be protected may be very huge.
It will make the protection for dynamic SDBs more difficult than for static SDBs.

There are many inference control methods proposed to protect various database
systems [1-3]. Those methods for SDBs can be classified into three classes:
conception, perturbation, and query restriction. In this article, we will briefly
introduce the three general approaches first. To evaluate the features of these
mechanisms, six criteria [3] are also introduced. Then, in the following sections, we
will describe some important works about the protection mechanism in SDB more
clearly and discuss their features with the criteria. Finally, we will briefly present our
scheme, a query-restriction-based security-control method for protecting dynamic
SDBs [20]. This scheme guarantees the security of dynamic SDBs and needs less time
and storage requirements than the traditional schemes.

2. Evaluation Criteria

Wortmann et al. [3] proposed six criteria to evaluate the security-control mechanisms
for SDBs. These criteria include 1) security, 2) static/dynamic SDB, 3) richness, 4)
bias, 5) consistency, and 6) cost.

1) Security

Of course, the security level that the protection methods can provide is the most

important point when we evaluate them. Some methods may be easy to implement but
cannot guarantee absolute security, vice versa.

2) Static/Dynamic SDB

Suitability to dynamic SDB is also necessary. As the example mentioned in the
previous section, the user can infer the confidential data by the reflection of dynamic
operations. Hence, for a protection method, it ensures that any changes to the SDB are
reflected in the statistics provided to users as soon as the changes have been taken
place in the real world.

3) Richness

An ideal protection method should provide users with all relevant non-confidential
information and at the same time protect all confidential information. That is, the
method should not be under too much constraint for users. The user should get the
information as many as possible under safe condition. Otherwise, it will lose the
usefulness of the database.

4) Bias

Bias represents the difference between the unperturbed statistic and the expected
value of its perturbed estimate. The bias should be zero or at least as small as possible.

5) Consistency

Consistency represents the lack of contradictions and paradoxes [Denn83].

Contradictions arise, for example, when repetitions of the same query yield different

results, or the average statistic differs from the computed average using the sum and

count statistics.

6) Cost

The cost of CPU time and storage space requirements must take into account.
Whenever the system processes a query, the overhead occurs. In an on-line dynamic
SDB environment, the processing cost is a significant factor. Implementation and
education cost are also the factors besides the processing overhead.

3. Inference Control Methods for SDBs

To enhance the security of statistical databases, there are many inference control
methods proposed. Those methods can be classified into three classes: conception,
perturbation, and query restriction. In this chapter, we will illustrate some important
works about the three approaches.

3.1 Conceptual Approach

The conceptual model provides a framework for investigating the security problem at
the conceptual-data-model level [4]. A popular approach for the conceptual model is
the lattice model [5, 6]. This model presents a framework for better understanding and
investigating the security problem of SDBs, but gives too many constraints for users.

The lattice model describes SDB information in tabular form at different levels of
aggregation. The interest in it stems from the fact that statistical information that is
provided at different levels of aggregation may introduce redundant information. If
confidential information is suppressed at the detailed level, such information might be
disclosed due to more aggregate information.

To illustrate, consider a college database with categorical attributes Age, Gender, and
Position (A, G, P). The corresponding lattice model is shown in Figure 2. The most
detailed way to represent this database in tabular form consists of a three-dimensional
table AGP with dimensions A, G, and P (Figure 3).

Table AGP:
Age Position Gender

0-20 21-45 46-65 >65
M 0 1 9 0 Professor
F 0 16 0 0
M 1 20 48 0 Vice Professor
F 1 0 52 0
M 24 2 9 49 Others
F 26 0 1 51

Table AG:

Table ALL

Table A

Table AG

Table AGP

Table GP
Table AP

Table G Table P

Figure 2 Lattice model

Age Gender
0-20 21-45 46-65 >65

M 25 23 66 49
F 27 16 53 51

Table AP:
Age Position

0-20 21-45 46-65 >65
Professor 0 17 9 0

Vice Professor 2 20 100 0
Others 50 2 10 100

Table GP:
Gender Position

M F
Professor 10 16

Vice Professor 69 53
Others 84 78

Table A:
Age

0-20 21-45 46-65 >65
52 39 119 100

Table G:
Gender

M F
163 147

Table P:

Position
Professor Vice Professor Others

26 122 162

Table ALL: 310

Figure 3. Lattice model

A particular elementary cell in this table might be, for example, the cell, where A=42,
G=M and P=Professor. This tabular form can be aggregated into three

two-dimensional tables:

1. Table AG, where AGP is aggregated over the dimension P; an example of a cell in
this case is the one in which A=42 and G=M.

2. Table AP, where AGP is aggregated over the dimension G; an example of a cell is
the one in which A=42 and P=Professor.

3. Table GP, where AGP is aggregated over the dimension A; an example of a cell is
the one in which G=M and P=Professor.

The aggregation performed in obtaining these three new tables is called
microaggregation. The process can be repeated in order to obtain three
one-dimensional tables:

1. Table A, where table AG is aggregated over the dimension G or table AP is
aggregated over dimension P.

2. Table G, where table AG is aggregated over the dimension A or tables GP is
aggregated over dimension P.

3. Table P, where table AP is aggregated over the dimension A or table GP is
aggregated over dimension G.

The aggregation can be extended one step further, where a zero-dimensional table is
obtained. This table contains only one cell, providing statistics for the database as a
whole. Note that the set of all two-dimensional tables may sometimes disclose the
elementary cell statistic of the three-dimensional table. The objective is to control the
inference of sensitivity statistics. Here, we shall assume that a sensitive statistic one
with a query set of size one. Thus, the male professor during 21-45 years old is
sensitive.

The lattice model has proved a powerful and effective security model for studying the
inference problem and proposed solutions. But it cannot provide the richness of
databases and is not suitable for dynamic SDB.

3.2 Perturbation Approach

Perturbation approaches [7-13] introduce noise in the data, or perturb the answer to
user queries while leaving the data in the SDB unchanged. They can be classified to
data perturbation and output perturbation. Since these approaches cannot provide
precise answers to users, bias and consistency are two major factors to evaluate
perturbation methods. Here, we just give the basic idea of two approaches. The more
details can see reference [7, 9, 10, 12].

3.2.1 Data Perturbation

Schlorer [12] suggested a data transformation scheme based on interchanging values
in the records (called swapping). The objective is to swap enough values that nothing
can be deduced from disclosure of individual records, but at the same time to preserve
the accuracy of at least low-order statistics (A t-order statistic is some statistical
quantity that can be computed from the values of exactly t attributes).

Schlorer defines a database D to be d-transformable if there exists at least one other
database D’ such that

D and D’ have the same k-order frequency counts for k=0,1... d, and

D and D’ have no records in common.

Due to the computational requirement of the method, it is only feasible to consider it
for static SDBs. And there is a need for a one-to-one mapping between the original
database and the perturbed database. Although several alternative methods discussed
[11], further investigation is required. And as shown in [11], the method may in some
cases have an error of up to 50%.

In general, data swapping has not been developed enough to be seriously considered
for SDBs.

3.2.2 Output Perturbation

Denning [7] proposed a method that is comparable to ordinary random sampling
where a sample is drawn from the query set itself (called Random-Sample Queries).

Given a characteristic formula C , a set of records that satisfies C is determined. For
each record r in the query set, the system applies a Boolean formula f (C, r) to
determine whether this record is to be included in the sampled query set. The function
f is designed in such a way that there is a probability P that the record is included in
the sampled query set. The probability P can be set by database administrators. The
required statistics are computed based on the sampled query set. The statistics
computed from the sampled query set have to be divided by P in order to provide a
corresponding unbiased estimator. For example, if the response to a count query based

on the sampled query set is n*, an estimator for the true count is n*/P.

The probability of a record being included in the query set P is either fixed or variable.
When P is fixed there should be a query-set-size restriction if P is large. Otherwise,
there is a high probability of including all the records of a small query set, thus
compromising the database. When P is variable, it should approach 0 for a query
-set-size approaching 1 in order to avoid compromising the database. However, this
will be high inconsistent.

3.3 Query Restriction Approach

Query restriction methods impose extra restriction on queries which includes
restricting the query set size [14], controlling the overlap among successive queries
[15], auditing [16], partitioning [17, 18], and suppressing cells [19]. Some of them
cannot guarantee high security assurance, while others limit the usefulness of the
SDBs. The following subsections will discus these five methods and give some
comments with respect to the criteria mentioned in section 2.

3.3.1 Query-Set-Size Control

For each query, the query-set-size control method restricts the number of individuals,

|C|. The database system responds the answer of the query only if |C| satisfies the
condition [14]

 KLCK −≤≤

where L is the size of the database (the number of individuals represented in the
database) and K is a parameter set by the database administrator. Obviously, K should
satisfy the condition
 L/2K0 ≤≤ ,
otherwise no query can be answered.

Summarily, the main advantage of query-set-size control method is easily
implemented so that this scheme is suitable for dynamic SDBs. In [21], however, it
was shown that by using a snooping tool called “tracker” it was possible to
compromise the SDB that was protected with the query-set-size control scheme alone.

3.3.2 Query-Set-Overlap Control

Dobkin et al. [15] pointed out that it is possible for a user to determine the value of a
particular individual if two queries overlap greatly. (The overlapping part of two
queries is the set of individuals included in both queries.) They investigated the
correlation between the overlapping size (r) of queries and the number of queries (S)
that suffice to compromise the database. A lower bound on S was deduced as
 S ≥ 1 + (k – (l + 1)) / r,
where k denotes the query size (the number of individuals included in the query) and l
denotes the number of individuals whose values have been known by users. Thus, for
a secure SDB, l should be equal to zero, and the minimum number of queries (S) for
compromising the SDB should be larger that 1+(k+1)/r. Following this deduction, the
authors of [15] pointed out that there do exist mechanisms (bounding the overlap and
the number of queries) that can protect a database.

However, query-set-overlap control method suffers from the drawback such as that
the control method will seriously impair the richness of the database. For example, if
the individuals included in a new query are the subset of a previous query, the
query-set-overlap control method will deny the new query since both queries overlap
greatly (even that the new query may not cause the compromise of SDBs). Because of
the lack of practical interest, the query-set-overlap control method is also unsuitable
for dynamic SDBs.

3.3.3 Auditing

Auditing of an SDB involves keeping up-to-date logs of all queries made by each user
and constantly checking for possible compromise whenever a new query is issued
[16]. Auditing has the advantages such as allowing the SDB to provide users with
unperturbed response that will not make compromised. Besides, auditing mechanism
can avoid linear system attacks [14]. For example,

 x1 + x2 + x3 = q1

 x1 + x2 + x4 = q2

 x1 + x3 + x4 = q3

 x2 + x3 + x4 = q4

The value x1 can be compromised by computing

 x1 = 1/3 (q1 + q2 + q3 – 2q4).

In fact, almost all of compromised conditions occurring in SDBs due to linear system
attack.

One of the major drawbacks of auditing, however, is its excessive CPU time and
storage space requirement to store and process the accumulated logs.

A practical approach based on auditing was proposed by Chin and Ozsoyoglu[16].
The approach maintains a matrix to audit the history of user's queries and detects all
of the possible compromised conditions from linear system attack.

In Chin's scheme, the SDB consists of n individuals xi, 1≦i≦ n. For notational
simplicity, each individual xi is assumed to have a single protected numerical attribute
value, and each answered query reveals a set of individual records {xi, xj, xk, ...}.
Hence, each answered query can be represented by a vector (a1, a2, ...,an), where ai =
1, if xi is accessed in this query. The user's knowledge space KS is the vector space

spanned by the set of vectors of answered queries AQ. Formally, KS has the following
properties.

 1) If AQq ∈ , then KSq∈ .

 2) If KSq∈ , then KSqb ∈∗ ; b is a real number.

 3) If KSqq ∈21 , , then KSqq ∈+ 21 .

 4) Nothing else is in KS.

KS can be represented by a maximal set of non-redundant vectors of AQ. For example
in Figure 1,

 1q =(1,0,0,1) (SUM of the scores of the people living in New York)

 2q =(1,0,1,1) (SUM of the scores of the people majoring in C.S.).

We have

1c 2c 3c 4c









=

1101
1001

KS

where ci represents the column associated with individuals xi. Notice that the vectors

in KS are linear independent. Therefore, the number of rows cannot exceed the
number of columns in KS. The SDB is compromised if there exists a vector of the
form (0, ...,0,1,0, ...,0) in KS.

Unfortunately, Chin's scheme suffers from space explosion problems if the SDB is
dynamically updated. In Chin's scheme, when an individual of an SDB is inserted, a
new column corresponding to this individual is inserted to KS. Since the new
individual has not yet been queried, all entries of the new column are zeros. On the
other hand, when an individual is deleted, the corresponding column, called the
dangling column , cannot be directly removed from the KS matrix for the protection of
individual information.

If we directly delete the dangling columns to reduce the size of KS, the deletion may
cause both false alarms and security disclosure. A false alarm is raised when a vector
with a single “1” is found in the audit matrix but the corresponding individual is not
disclosed. On the other hand, security disclosure occurs when the audit matrix does
not have any vector with a single “1”, but the secret of an individual is disclosed. For
example in Figure 4, the individual x2 is deleted from SDB. If we remove the
corresponding column c2 in KS, the audit matrix will report that x4 is disclosed and

















=

0110001
0011100
0001010
1110101

KS



















=

011001
001110
000100
111011

KS

1c 2c 3c 4c 5c 6c 7c

x2 is deleted from the
SDB and the c2

column is removed

1c 3c 4c 5c 6c 7c

Figure 4. Deletion that causes a false alarm

the SDB is compromised. (That is, according to the second row recorded in new KS,
the vector (0, 0, 1, 0, 0, 0) contains a single “1” at the position of x4.) In fact, x4 is

still undisclosed at this time. Thus, a false alarm has been raised.

Another example illustrated for security disclosure is shown in Figure 5. In this
example, the individual x1 is deleted from the SDB. It seems reasonable to delete the
column c1. However, the deletion of the column will cause disclosure of secret

information. Assume that a new answered query, (0,1,0,1,1,1), is invoked in KS after
the deletion. The audit scheme will check KS and consider it as a redundant
answerable query, which is the same as r1. As a result, KS remains unchanged and the
query is answered. Thus, the secret information of the deleted x1 is disclosed.

The two examples above demonstrate that we cannot arbitrarily remove a column in a
KS when the corresponding individual is deleted from the SDB. Therefore, the size of
KS will only be expanded without any upper bound when the individuals of a
finite-size SDB are dynamically inserted, deleted or updated. It is possible to have a
large KS for a small SDB. Substantial memory and CPU time are wasted in handling
these columns. It is not efficient to check the entire KS matrix for every query, when
the number of the rows and the columns in KS is large. To cope with the problem,
Chin imposes the restriction on the scheme that it can only be used in static SDBs.
The restriction limits the use of the scheme. A method for the reduction of KS is
desirable.

In [20], we propose an algorithm for the reduction of KS size. With this algorithm,
Chin's scheme can be enhanced so that it can be used in a dynamic SDB. As described
above, in order to guarantee the security of an SDB, all dangling columns cannot be
arbitrarily deleted from the KS. However, it is possible to delete part of the dangling
columns if the deletion will not cause the false alarm or the disclosure of any
individual information. We call the removable part of audit matrix is a related

















=

0110001
0010100
0001010
1110101

KS



















=

011000
001010
000101
111010

KS

1c 2c 3c 4c 5c 6c 7c

x1 is deleted from the SDB
and the corresponding col-
umn c1 is removed from KS

2c 4c 5c 6c 7c3c

Figure 5. Deletion that causes disclosure of secret information.

(0,1,0,1,1,1) is invoked



















=

011000
001010
000101
111010

KS

2c 4c 5c 6c 7c3c

garbage set.

In an audit matrix, an entry can only be either ‘1’ or ‘0’. A column and a row are
directly related if their shared entry is ‘1’. Indirectly related relation can be defined
recursively. A column/row is indirectly related to a column/row if a directly related
column/row of the former is directly/indirectly related to the latter. If a column/row is
directly or indirectly related to another column/row, then they are related. Otherwise,
they are unrelated. All related columns and rows form a related set. All elements of a
related set are related to each other, and no element outside of the related set can be
related to any element of the set. For example, in Figure 6, r1 and r4 are directly
related to c1; r1 are indirectly related to r4; {c1, c3, c5, c6, c7, r1, r3, r4} is a related

set.

Definition 1: Let c1, c2, ..., ck, r1, r2, ..., rl represent all elements of a related set in
the audit matrix. If c1, c2, ..., ck are dangling columns, then
(1) c1, c2, ..., ck and r1, r2, ..., rl are garbage columns and rows, respectively, and

(2) the related set is called a related garbage set.

Since the garbage columns and rows of a related set are unrelated to other columns
and rows, they can be removed without affecting the subsequent security analysis of
the audit matrix. In [20], we have proposed an algorithm FINDING_GARBAGE
based on the concept that garbage columns and rows are related. Whenever an
individual is deleted, the algorithm is able to find all the columns and rows related the
new dangling column. If these columns are also dangling, then these columns and
rows are all garbage and can be removed.

Although we can use this method to reduce the memory requirement and improve the
performance of Chin's audit scheme, FINDING_GARBAGE itself also introduce
overhead for the deletion of individuals from an SDB. In section 4, we will introduce
a new scheme to construct the knowledge space of the SDB. It uses less space to
maintain the audit matrix, and its garbage information in the knowledge space can be
easily found and removed without the need of invoking the FINDING_GARBAGE
procedure.

Figure 6. A related set



















=

0110001
0010100
0001010
1110101

KS

c1 c2 c3 c4 c5 c6 c7
r1

r2

r3

r4

{c1, c5, c6, c7, r1, r3, r4}
is a related set

3.3.4 Partitioning

The basic idea of partitioning is to cluster individual entities in a number of mutually
exclusive subsets, called atomic populations [17]. The statistical properties of these
atomic populations constitute the raw materials available to the database users. As
long as atomic populations do not contain precisely one individual record, a high
security level can be attained.

Schlorer [12] has investigated a large number of practical databases and found that a

considerable number of atomic populations with only one entity will emerge.

Clustering such populations with larger ones leads to serious information loss.

In order to cope with the problem of atomic populations of size 1, it was proposed in
Chin and Ozsoyoglu [17], to add dummy records to the database. However, bias will
be suffered from it.

3.3.5 Cell Suppression

Cell suppression [19] is one of the techniques typically used by census bureaus for
data published in tabular form. Cell suppression has been investigated for static SDBs.
The basic idea is to hide the cells that may cause confidential information to be
disclosed. Other cells of non-confidential information which may lead to a disclosure
of some confidential information also have to be suppressed (this is called
complementary suppression).

Cox [19] has studied the determination of complementary suppressed cells. He shows
that the determination of a minimum set of complementary suppression involves a
great deal of computational complexity. So cell suppression is limited by the
computational complexity of the analysis procedure of determining the
complementary suppressed cells. And the set of all possible statistics for a database

with N fields of attributes in each record corresponds to an N-dimensional table.
When N is large, applying cell suppression to a table of this size may not be tractable.

In [6], they show that cell suppression becomes impractical if an arbitrary complex
syntax for queries is allowed. (With such syntax, suppression of complete tables from
the lattice model might be necessary.)

4. Audit Scheme for Dynamic SDBs

Although the traditional audit approach mentioned in section 3 can guarantee the
security of SDBs and provide precise responses, it is impractical for dynamic SDBs
since the CPU time and storage space explosion problem. In this section, we will
introduce an audit scheme which needs less storage space for auditing users’ queries.

Thus the CPU time of analyzing the security of SDBs is also reduced [20]. Since the
cost is significantly reduced, the audit scheme will be suitable for dynamic SDBs.

In the statistical queries of SDBs, individuals with the same characteristics tend to be
queried together, and individuals with different characteristics tend not to be queried
together. It is possible to speed up the security analysis process by taking advantage of
the characteristics.

Let Gj represent the set of individuals that were always queried together. The
knowledge space in our scheme is represented as a set of vector spaces, VS1,
VS2,...,VSm, and an untouched set Z of never accessed individuals. VSi provides the
knowledge regarding to the individuals that were accessed at least in a query. VSi is

represented in the matrix form where the columns are associated with the groups, the
rows are linearly independent answered query vectors, and its entry indicates the
status of the groups. A ‘1’ entry indicates that all individuals of a group are accessed.
A ‘0’ entry indicates that all individuals of a group are not accessed.

There are three operations that are used to reconstruct the VS set: creating new VSs
and new groups, splitting groups, and merging independent VSs into a new one. We
will discuss them in the following.

4.1 The Operations of the Audit Scheme

Creating New VSs and New Groups
If some individuals in Z are queried by a new answered query, they will form a new
group. If all the queried individuals belong to Z, a new vector space VSi is created

which only contains a single column associated with the new group since the new
group is never queried together with other groups. If only a subset of the queried
individuals belongs to Z, a new column associated with the subset will be added to the
VSi whose groups are also queried in the new answered query. As an example, assume
that initially the VS set are empty, and the set Z contains all individuals x1, x2,...,and
x7. When the first answered vector is invoked, the individuals which are accessed in

this query should be grouped together and the others should remain in the Z set. If the

first vector is 1q = (1,0,1,0,1,1,1), then

[]1=1VS
1G

, where },,,,{ 765311 xxxxxG = and },{ 42 xxZ = .

Assume the second vector 2q = (0,1,0,1,0,0,0) is invoked. The accessed individuals

in 1q and 2q are totally unrelated, and therefore a new vector space VS2 and a new

group G2 are created. At the same time, the Z set must also be changed. Therefore, the

VSs become

and , where },,,,{ 765311 xxxxxG = , },{ 422 xxG = , and φ=Z .[]1=1VS
1G

[]1=2VS
2G

Splitting Groups
When individuals that have been always queried together and included in the same
group are not queried together in the new answered query, the group must be split.
Because there are only two possible values, 0 or 1, in an answered vector, the group
must be split into two new groups: one group associated with the 1's and the other
group associated with the 0's in the new answered vector. The two new columns
associated with the two new groups have the same values as the old column
associated with the original group. A new row will also be inserted into the new vector

space VSi. With the same example above, assume that the third answered query is 3q

= (0,0,1,0,1,0,0), where only x3 and x5 are queried together. Thus, G1 is split into two
new groups, G1 and G3. The new VS1 and groups are listed as follows:





= 10

11
1VS

1G 3G

[]1=2VS
2G

, where },,{ 7611 xxxG = , },{ 422 xxG = , },{ 533 xxG = ,

 and φ=Z .

Notice that, except the second row in the new VS1, the two new columns associated
with the new G1 and G3 have the same values as the old one associated with the old
G1.

Merging the VSs
When the individuals of different VSs are queried together, these VSs must be merged
into a new one. Thus, a h×m VSi and a k×n VSj will be merged into a (k+h)×(n+m)
VSk. The k×n VSj must be expanded by padding with m all-‘0’ columns before
merging with a h×m VSi. Similarly, the h×m VSi also need to be expanded by padding

with n all-‘0’ columns. Using the previous example, assume that the fourth query

4q =(0,1,1,1,1,0,0) is invoked, then VS1 and VS2 are merged because that G2 and G3

are queried together. Note that the new query vector will not be inserted into the new
VS1 because it can be computed as r2+r3, and thus is not linearly independent of the
rows of VS1. The merging process is shown as follows:





= 10

11
1VS

1G 3G

[]1=2VS
2G





= 010

011'1VS
1G 3G 2G

[]100' =2VS
1G 3G 2G












=

100
010
011

1VS

1G 3G 2Gexpand
and pad merge '1VS with '2VS

The VS set is reconstructed if any of the three operations described above is invoked
by a new answerable query. The reconstruction of the VS set is scarcely needed if
individuals with similar characteristics tend to be queried together, and individuals
with the different characteristics tend not to be queried together in the answered
queries. In this case, the time spent on reconstructing the VSs can be ignored.

With the VS set presented in our scheme, we are able to distinguish illegal queries.
The checking process within a VS is similar to that within a KS in Chin's scheme. An
SDB is compromised if there exists a row containing a single ‘1’-entry in its VSs and
the corresponding group contains only a single individual. Otherwise, the SDB is still
secure after answering the query.

4.2 Updates in A Dynamic SDB

The insertion and deletion of individuals in our scheme is easy. In a dynamic SDB,
whenever a new individual is inserted into the SDB, the individual is directly inserted
into the set Z because it is never accessed before. On the other hand, when an
individual is deleted from the database, it can be removed from Z without modifying
VSs if it belongs to the set Z. Otherwise, we must consider two cases. Assume that the
deleted individual xi belongs to the group Gj which is contained in VSk. In the first
case, Gj contains at least one individual, excluding xi, that has not yet been deleted.
All we have to do is to mark xi as deleted. In the second case that all individuals,
except xi, contained in Gj have been marked as deleted, Gj must be marked as deleted.

If a group is marked as deleted, the system herein check whether all groups in the
same VS are deleted. If all groups of this VS are deleted, then the VS and its groups
can be removed. Since the check is very simple, the cost will be limited and ignored.
(Refer to [20] for the details of deletion.)

In the traditional audit approach, e.g. Chin's scheme, it takes no more than O(KN)

steps to check the security of the SDB and determine whether a new query vector q

∈ K×N KS [13], where N is equal to the sum of the total number of individuals in an
SDB (na) and that of the deleted ones (nd). In our scheme, consider an average case

where each group contains u individuals and each vector space contains equal number
of columns (n) and rows (k). The complexity of our scheme for checking the security

of the SDB becomes O(k×n), which can also be represented as O(
uv
N

v
K

×).

Furthermore, in a dynamic SDB where ninety percent of the individuals (nd/N = 90%)

are deleted and their corresponding columns are garbage, the complexity can be

further reduced to O(
uv

N
v

K
1010

×). Comparing with the O(K×N) of Chin's scheme, our

scheme performs better.

Reference

[1] M. Mogenstern, "Controlling logical inference in multilevel database systems,"
Proc. IEEE CS Symp. Security and Privacy, pp.245-255 (Apr. 1988).

[2] H. S. Delugach and T. H. Hinke, "Wizard: A database inference analysis and
detection system," IEEE Tran. on Knowledge and Data Engineering, Vol.8(1),
pp.56-66 (Feb. 1996).

[3] J. C. Wortmann and N. R. Adam, "Security-Control methods for statistics
databases: A comparative study," ACM Computing Surveys, Vol. 21(4) pp.
515-554 (Dec. 1989)

[4] F. Y. Chin and G. Ozsoyoglu, "Statistical database design," ACM Trans. on
Database Syst. Vol. 6(1) pp. 113-139 (Mar. 1981).

[5] D. E. Denning, "A security model for the statistical database problem," In
Proceedings of the 2nd International Workshop on Management, pp. 1-16 (1983).

[6] D. E. Denning and J. Schlorer, "Inference control for statistical databases,"
Computer, Vol. 16(7) pp. 69-82 (July 1983).

[7] D. E. Denning, "Secure statistical databases under random sample queries," ACM
Trans. on Database Syst. Vol. 5(3) pp. 291-315 (Sept. 1980)

[8] G. Ozsoyoglu and T. A. Su, "On inference control in semantic data models for
statistical databases," Journal of Computer and System Sciences, Vol.40(3),
pp.405-443 (Jun. 1990).

[9] S. B. Reiss, "The practicality of data swapping," Technical Report No. CS-48,
Dept. of Computer Science, Brown Univ., Providence, R.I. (1979).

[10] S. B. Reiss, "Practical data-swapping: The first steps," In Proceedings 1980
Symp. on Security and Privacy, IEEE Computer Society pp. 38-45 (Apr. 1980).

[11] S. B. Reiss, "Practical data-swapping: The first steps," ACM Trans. on Database
Syst. pp. 20-37 (Mar. 1984).

[12] J. Schlorer, "Security of statistical databases: Multidimensional transformation,"
ACM Trans. on Database Syst. Vol. 6(1) pp. 95-112 (Mar. 1981).

[13] J. F. Traub, Y. Yemini and H. Wozniakowski, "The Statistical Security of a
Statistical Database," ACM Trans. on Database Syst, Vol. 9(4) pp.672 - 679 (Dec.
1984).

[14] D. E. Denning, "Cryptography and Data Security," Addison-Wesley, Reading
Mass.

[15] D. Dobkin, A. K. Jones and R. J. Lipton, "Secure databases: Protection Against
User Inference," ACM Trans. on Database Syst. Vol. 4(1) pp. 97-106 (Mar.
1979).

[16] F. Y. Chin and G. Ozsoyoglu, "Auditing and inference control in statistical
databases," IEEE Trans. on Softw. Eng. pp. 574-582 (Apr. 1982).

[17] F. Y. Chin and G. Ozsoyoglu, "Security in partitioned dynamic statistical
databases," In Proceedings of the IEEE COMPSAC, pp. 594-601 (1979)

[18] M. McLeish, "Further result on the security of partitioned dynamic statistical
databases," ACM Trans. on Database Systems, Vol.14(1), pp.98-113 (Mar. 1989).

[19] L. H. Cox, "Suppression methodology and statistical disclosure control," J. Am.
Stat. Assoc. Vol. 75(370) pp. 377-385 (June 1980).

[20] Shiuh-Pyng Shieh and Chern-Tang Lin, “Auditing user queries in dynamic
statistical databases,” Information Science, Vol. 113(1-2), pp. 131-146 (Jan.
1999).

[21] Denning, D. E., Denning, P. J. and Schwartz, M. D., “The tracker: A threat to
statistical database security,” ACM Trans. on Database Syst. Vol. 4(1) pp. 76-96
(Mar. 1979).

