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Abstract 

A statistical database (SDB) is a database that contains sensitive records describing 
individuals but only statistical information is available. There are many inference 
control methods proposed to protect SDBs. In this article, we will briefly introduce 
three general approaches: conception, perturbation, and query restriction approaches. 
In addition, six criteria are also introduced to evaluate the features of these 
mechanisms. However,  in practice, many SDBs are dynamically updated. This feature 
restricts the use of many inference control methods. Thus, in the rest of the article, we 
will present an efficient audit scheme, which is a query-restriction-based 
security-control method for protecting dynamic SDBs. This scheme guarantees the 
security of SDBs and needs less time and storage requirements than the traditional 
schemes while database systems are dynamically updated. 

1. Introduction 

A statistical database (SDB) is a database that contains sensitive records describing 
individuals but only statistical information is available. SDBs are mainly used for 
statistical analysis where only statistical queries, such as SUM, AVERAGE, COUNT 
are available and information of individuals cannot be disclosed. SDBs are used in 
many applications, such as census data, mortality data, and economic planning. A 
typical example of SDB is illustrated in Figure 1. In the SDB, the scores of 

individuals should not be disclosed, and therefore AVERAGE(ID = 1, Score), the 
average score of students with ID 1, is an illegal query. But statistical queries, such as 

COUNT(ALL) and AVERAGE(Address=“New York”, Score) are legal. Although 
users are only allowed to access the statistical information from an SDB, they can 
infer the confidential individual information by invoking a series of legal queries. 
When any confidential information is disclosed, the SDB is compromised.  For 

example, both AVERAGE(Address = “New York”, Score) and AVERAGE(Dept. = 



“C.S.”, Score) are legal queries. A user can infer the confidential information (the 
score of ID 3) by computing the difference between these two queries. If both queries 
are answered, the SDB will be compromised. Therefore, the SDB should deny one of 
the two queries to protect the individual information. 

Figure  1.  A statistical database
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In practice, many SDBs are dynamic. That is, the individual records of an SDB need 
to be inserted, deleted and updated dynamically to keep statistical information fresh. A 
user may infer confidential information from the updates of a dynamic SDB. For 

example, when invoking the query AVERAGE(Gender = “M”, Score) before and 
after inserting a new record with gender “M” into the SDB shown in Figure 1, the 
invoker can infer the new record's score from the change of the answers. Therefore, 
not only the old and the new values of an individual, but also the change of an SDB 
should be protected. Thus, the whole database needed be protected may be very huge. 
It will make the protection for dynamic SDBs more difficult than for static SDBs. 

There are many inference control methods proposed to protect various database 
systems [1-3]. Those methods for SDBs can be classified into three classes: 
conception, perturbation, and query restriction. In this article, we will briefly 
introduce the three general approaches first. To evaluate the features of these 
mechanisms, six criteria [3] are also introduced. Then, in the following sections, we 
will describe some important works about the protection mechanism in SDB more 
clearly and discuss their features with the criteria. Finally, we will briefly present our 
scheme, a query-restriction-based security-control method for protecting dynamic 
SDBs [20]. This scheme guarantees the security of dynamic SDBs and needs less time 
and storage requirements than the traditional schemes. 

2. Evaluation Criteria 

Wortmann et al. [3] proposed six criteria to evaluate the security-control mechanisms 
for SDBs. These criteria include 1) security, 2) static/dynamic SDB, 3) richness, 4) 
bias, 5) consistency, and 6) cost. 

1) Security 

Of course, the security level that the protection methods can provide is the most 



important point when we evaluate them. Some methods may be easy to implement but 
cannot guarantee absolute security, vice versa. 

2) Static/Dynamic SDB 

Suitability to dynamic SDB is also necessary. As the example mentioned in the 
previous section, the user can infer the confidential data by the reflection of dynamic 
operations. Hence, for a protection method, it ensures that any changes to the SDB are 
reflected in the statistics provided to users as soon as the changes have been taken 
place in the real world. 

3) Richness 

An ideal protection method should provide users with all relevant non-confidential 
information and at the same time protect all confidential information. That is, the 
method should not be under too much constraint for users. The user should get the 
information as many as possible under safe condition. Otherwise, it will lose the 
usefulness of the database. 

4) Bias 

Bias represents the difference between the unperturbed statistic and the expected 
value of its perturbed estimate. The bias should be zero or at least as small as possible. 

5) Consistency 

Consistency represents the lack of contradictions and paradoxes [Denn83]. 

Contradictions arise, for example, when repetitions of the same query yield different 

results, or the average statistic differs from the computed average using the sum and 

count statistics. 

6) Cost 

The cost of CPU time and storage space requirements must take into account. 
Whenever the system processes a query, the overhead occurs. In an on-line dynamic 
SDB environment, the processing cost is a significant factor. Implementation and 
education cost are also the factors besides the processing overhead. 

3. Inference Control Methods for SDBs 

To enhance the security of statistical databases, there are many inference control 
methods proposed. Those methods can be classified into three classes: conception, 
perturbation, and query restriction. In this chapter, we will illustrate some important 
works about the three approaches. 

3.1 Conceptual Approach  



The conceptual model provides a framework for investigating the security problem at 
the conceptual-data-model level [4]. A popular approach for the conceptual model is 
the lattice model [5, 6]. This model presents a framework for better understanding and 
investigating the security problem of SDBs, but gives too many constraints for users. 

The lattice model describes SDB information in tabular form at different levels of 
aggregation. The interest in it stems from the fact that statistical information that is 
provided at different levels of aggregation may introduce redundant information. If 
confidential information is suppressed at the detailed level, such information might be 
disclosed due to more aggregate information. 

To illustrate, consider a college database with categorical attributes Age, Gender, and 
Position (A, G, P). The corresponding lattice model is shown in Figure 2. The most 
detailed way to represent this database in tabular form consists of a three-dimensional 
table AGP with dimensions A, G, and P (Figure 3). 

 

Table AGP: 
Age Position Gender 

0-20 21-45 46-65 >65 
M 0 1 9 0 Professor 
F 0 16 0 0 
M 1 20 48 0 Vice Professor 
F 1 0 52 0 
M 24 2 9 49 Others 
F 26 0 1 51 

 

 

Table AG: 

Table ALL

Table A

Table AG

Table AGP

Table GP
Table AP

Table G Table P

Figure 2 Lattice model



Age Gender 
0-20 21-45 46-65 >65 

M 25 23 66 49 
F 27 16 53 51 

 

Table AP: 
Age Position 

0-20 21-45 46-65 >65 
Professor 0 17 9 0 

Vice Professor 2 20 100 0 
Others 50 2 10 100 

 

Table GP: 
Gender Position 

M F 
Professor 10 16 

Vice Professor 69 53 
Others 84 78 

 

Table A: 
Age 

0-20 21-45 46-65 >65 
52 39 119 100 

 

Table G: 
Gender 

M F 
163 147 

 
Table P: 

Position 
Professor Vice Professor Others 

26 122 162 
 

Table ALL: 310 

 

Figure 3. Lattice model 

A particular elementary cell in this table might be, for example, the cell, where A=42, 
G=M and P=Professor. This tabular form can be aggregated into three 



two-dimensional tables: 

1. Table AG, where AGP is aggregated over the dimension P; an example of a cell in 
this case is the one in which A=42 and G=M. 

2. Table AP, where AGP is aggregated over the dimension G; an example of a cell is 
the one in which A=42 and P=Professor. 

3. Table GP, where AGP is aggregated over the dimension A; an example of a cell is 
the one in which G=M and P=Professor. 

The aggregation performed in obtaining these three new tables is called 
microaggregation. The process can be repeated in order to obtain three 
one-dimensional tables: 

1. Table A, where table AG is aggregated over the dimension G or table AP is 
aggregated over dimension P.  

2. Table G, where table AG is aggregated over the dimension A or tables GP is 
aggregated over dimension P.  

3. Table P, where table AP is aggregated over the dimension A or table GP is 
aggregated over dimension G. 

The aggregation can be extended one step further, where a zero-dimensional table is 
obtained. This table contains only one cell, providing statistics for the database as a 
whole. Note that the set of all two-dimensional tables may sometimes disclose the 
elementary cell statistic of the three-dimensional table. The objective is to control the 
inference of sensitivity statistics. Here, we shall assume that a sensitive statistic one 
with a query set of size one. Thus, the male professor during 21-45 years old is 
sensitive. 

The lattice model has proved a powerful and effective security model for studying the 
inference problem and proposed solutions. But it cannot provide the richness of 
databases and is not suitable for dynamic SDB. 

3.2 Perturbation Approach 

Perturbation approaches [7-13] introduce noise in the data, or perturb the answer to 
user queries while leaving the data in the SDB unchanged. They can be classified to 
data perturbation and output perturbation. Since these approaches cannot provide 
precise answers to users, bias and consistency are two major factors to evaluate 
perturbation methods. Here, we just give the basic idea of two approaches. The more 
details can see reference [7, 9, 10, 12]. 



3.2.1 Data Perturbation  

Schlorer [12] suggested a data transformation scheme based on interchanging values 
in the records (called swapping). The objective is to swap enough values that nothing 
can be deduced from disclosure of individual records, but at the same time to preserve 
the accuracy of at least low-order statistics (A t-order statistic is some statistical 
quantity that can be computed from the values of exactly t attributes). 

Schlorer defines a database D to be d-transformable if there exists at least one other 
database D’ such that 

D and D’ have the same k-order frequency counts for k=0,1... d, and 

D and D’ have no records in common. 

Due to the computational requirement of the method, it is only feasible to consider it 
for static SDBs. And there is a need for a one-to-one mapping between the original 
database and the perturbed database. Although several alternative methods discussed 
[11], further investigation is required. And as shown in [11], the method may in some 
cases have an error of up to 50%. 

In general, data swapping has not been developed enough to be seriously considered 
for SDBs. 

3.2.2 Output Perturbation 

Denning [7] proposed a method that is comparable to ordinary random sampling 
where a sample is drawn from the query set itself (called Random-Sample Queries). 

Given a characteristic formula C , a set of records that satisfies C is determined. For  
each record r in the query set, the system applies a Boolean formula f  (C, r) to 
determine whether this record is to be included in the sampled query set. The function 
f is designed in such a way that there is a probability P that the record is included in 
the sampled query set. The probability P can be set by database administrators. The 
required statistics are computed based on the sampled query set. The statistics 
computed from the sampled query set have to be divided by P in order to provide a 
corresponding unbiased estimator. For example, if the response to a count query based 

on the sampled query set is n*, an estimator for the true count is n*/P.  

The probability of a record being included in the query set P is either fixed or variable. 
When P is fixed there should be a query-set-size restriction if P is large. Otherwise, 
there is a high probability of including all the records of a small query set, thus 
compromising the database. When P is variable, it should approach 0 for a query 
-set-size approaching 1 in order to avoid compromising the database. However, this 
will be high inconsistent. 



3.3 Query Restriction Approach 

Query restriction methods impose extra restriction on queries which includes 
restricting the query set size [14], controlling the overlap among successive queries 
[15], auditing [16], partitioning [17, 18], and suppressing cells [19]. Some of them 
cannot guarantee high security assurance, while others limit the usefulness of the 
SDBs. The following subsections will discus these five methods and give some 
comments with respect to the criteria mentioned in section 2. 

3.3.1 Query-Set-Size Control 

For each query, the query-set-size control method restricts the number of individuals, 

|C|. The database system responds the answer of the query only if |C| satisfies the 
condition [14] 

 KLCK −≤≤  

where L is the size of the database (the number of individuals represented in the 
database) and K is a parameter set by the database administrator. Obviously, K should 
satisfy the condition 
 L/2K0 ≤≤ ,  
otherwise no query can be answered. 

Summarily, the main advantage of query-set-size control method is easily 
implemented so that this scheme is suitable for dynamic SDBs. In [21], however, it 
was shown that by using a snooping tool called “tracker” it was possible to 
compromise the SDB that was protected with the query-set-size control scheme alone. 

3.3.2 Query-Set-Overlap Control 

Dobkin et al. [15] pointed out that it is possible for a user to determine the value of a 
particular individual if two queries overlap greatly. (The overlapping part of two 
queries is the set of individuals included in both queries.) They investigated the 
correlation between the overlapping size (r) of queries and the number of queries (S) 
that suffice to compromise the database. A lower bound on S was deduced as  
  S ≥ 1 + (k – (l + 1)) / r,  
where k denotes the query size (the number of individuals included in the query) and l 
denotes the number of individuals whose values have been known by users. Thus, for 
a secure SDB, l should be equal to zero, and the minimum number of queries (S) for 
compromising the SDB should be larger that 1+(k+1)/r. Following this deduction, the 
authors of [15] pointed out that there do exist mechanisms (bounding the overlap and 
the number of queries) that can protect a database. 



However, query-set-overlap control method suffers from the drawback such as that 
the control method will seriously impair the richness of the database. For example, if 
the individuals included in a new query are the subset of a previous query, the 
query-set-overlap control method will deny the new query since both queries overlap 
greatly (even that the new query may not cause the compromise of SDBs). Because of 
the lack of practical interest, the query-set-overlap control method is also unsuitable 
for dynamic SDBs. 

3.3.3 Auditing 

Auditing of an SDB involves keeping up-to-date logs of all queries made by each user 
and constantly checking for possible compromise whenever a new query is issued 
[16]. Auditing has the advantages such as allowing the SDB to provide users with 
unperturbed response that will not make compromised. Besides, auditing mechanism 
can avoid linear system attacks [14]. For example,  

 x1 + x2 + x3 = q1 

 x1 + x2 + x4 = q2 

 x1 + x3 + x4 = q3 

 x2 + x3 + x4 = q4 

The value x1 can be compromised by computing 

 x1 = 1/3 (q1 + q2 + q3 – 2q4). 

In fact, almost all of compromised conditions occurring in SDBs due to linear system 
attack.  

One of the major drawbacks of auditing, however, is its excessive CPU time and 
storage space requirement to store and process the accumulated logs. 

A practical approach based on auditing was proposed by Chin and Ozsoyoglu[16]. 
The approach maintains a matrix to audit the history of user's queries and detects all 
of the possible compromised conditions from linear system attack.  

In Chin's scheme, the SDB consists of n individuals xi, 1≦i≦ n. For notational 
simplicity, each individual xi is assumed to have a single protected numerical attribute 
value, and each answered query reveals a set of individual records {xi,  xj, xk, ...}. 
Hence, each answered query can be represented by a vector (a1, a2, ...,an), where ai = 
1, if xi is accessed in this query. The user's knowledge space KS is the vector space 

spanned by the set of vectors of answered queries AQ. Formally, KS has the following 
properties. 



  1) If AQq ∈ , then KSq∈ . 

  2) If KSq∈ , then KSqb ∈∗ ; b is a real number. 

  3) If KSqq ∈21 , , then KSqq ∈+ 21 . 

  4) Nothing else is in KS. 

KS can be represented by a maximal set of non-redundant vectors of AQ. For example 
in Figure 1, 

 1q =(1,0,0,1)     (SUM of the scores of the people living in New York) 

 2q =(1,0,1,1)     (SUM of the scores of the people majoring in C.S.). 

We have 

 

1c 2c 3c 4c









=

1101
1001

KS
 

where ci represents the column associated with individuals xi. Notice that the vectors 

in KS are linear independent. Therefore, the number of rows cannot exceed the 
number of columns in KS. The SDB is compromised if there exists a vector of the 
form (0, ...,0,1,0, ...,0) in KS.  

Unfortunately, Chin's scheme suffers from space explosion problems if the SDB is 
dynamically updated. In Chin's scheme, when an individual of an SDB is inserted, a 
new column corresponding to this individual is inserted to KS. Since the new 
individual has not yet been queried, all entries of the new column are zeros. On the 
other hand, when an individual is deleted, the corresponding column, called the 
dangling column , cannot be directly removed from the KS matrix for the protection of 
individual information.  

If we directly delete the dangling columns to reduce the size of KS, the deletion may 
cause both false alarms and security disclosure. A false alarm is raised when a vector 
with a single “1” is found in the audit matrix but the corresponding individual is not 
disclosed. On the other hand, security disclosure occurs when the audit matrix does 
not have any vector with a single “1”, but the secret of an individual is disclosed. For 
example in Figure 4, the individual x2 is deleted from SDB. If we remove the 
corresponding column c2 in KS, the audit matrix will report that x4 is disclosed and 

















=

0110001
0011100
0001010
1110101

KS



















=

011001
001110
000100
111011

KS

1c 2c 3c 4c 5c 6c 7c

x2 is deleted from the
SDB and the c2

column is removed

1c 3c 4c 5c 6c 7c

Figure 4. Deletion that causes a false alarm



the SDB is compromised. (That is, according to the second row recorded in new KS, 
the vector (0, 0, 1, 0, 0, 0) contains a single “1” at the position of x4.) In fact, x4 is 

still undisclosed at this time. Thus, a false alarm has been raised. 

Another example illustrated for security disclosure is shown in Figure 5. In this 
example, the individual x1 is deleted from the SDB. It seems reasonable to delete the 
column c1. However, the deletion of the column will cause disclosure of secret 

information. Assume that a new answered query, (0,1,0,1,1,1), is invoked in KS after 
the deletion. The audit scheme will check KS and consider it as a redundant 
answerable query, which is the same as r1. As a result, KS remains unchanged and the 
query is answered. Thus, the secret information of the deleted x1 is disclosed. 

The two examples above demonstrate that we cannot arbitrarily remove a column in a 
KS when the corresponding individual is deleted from the SDB. Therefore, the size of 
KS will only be expanded without any upper bound when the individuals of a 
finite-size SDB are dynamically inserted, deleted or updated. It is possible to have a 
large KS for a small SDB. Substantial memory and CPU time are wasted in handling 
these columns. It is not efficient to check the entire KS matrix for every query, when 
the number of the rows and the columns in KS is large. To cope with the problem, 
Chin imposes the restriction on the scheme that it can only be used in static SDBs. 
The restriction limits the use of the scheme. A method for the reduction of KS is 
desirable. 

In [20], we propose an algorithm for the reduction of KS size. With this algorithm, 
Chin's scheme can be enhanced so that it can be used in a dynamic SDB. As described 
above, in order to guarantee the security of an SDB, all dangling columns cannot be 
arbitrarily deleted from the KS. However, it is possible to delete part of the dangling 
columns if the deletion will not cause the false alarm or the disclosure of any 
individual information. We call the removable part of audit matrix is a related 

















=

0110001
0010100
0001010
1110101

KS



















=

011000
001010
000101
111010

KS

1c 2c 3c 4c 5c 6c 7c

x1 is deleted from the SDB
and the corresponding col-
umn c1 is removed from KS

2c 4c 5c 6c 7c3c

Figure 5. Deletion that causes disclosure of secret information.

(0,1,0,1,1,1) is invoked
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2c 4c 5c 6c 7c3c



garbage set.  

In an audit matrix, an entry can only be either ‘1’ or ‘0’. A column and a row are 
directly related if their shared entry is ‘1’. Indirectly related relation can be defined 
recursively. A column/row is indirectly related to a column/row if a directly related 
column/row of the former is directly/indirectly related to the latter. If a column/row is 
directly or indirectly related to another column/row, then they are related. Otherwise, 
they are unrelated. All related columns and rows form a related set. All elements of a 
related set are related to each other, and no element outside of the related set can be 
related to any element of the set. For example, in Figure 6, r1 and r4 are directly 
related to c1; r1 are indirectly related to r4; {c1, c3, c5, c6, c7, r1, r3, r4} is a related 

set. 

Definition 1: Let c1, c2, ..., ck, r1, r2, ..., rl represent all elements of a related set in 
the audit matrix. If c1, c2, ..., ck are dangling columns, then  
(1) c1, c2, ..., ck and r1, r2, ..., rl are garbage columns and rows, respectively, and 

(2) the related set is called a related garbage set. 

Since the garbage columns and rows of a related set are unrelated to other columns 
and rows, they can be removed without affecting the subsequent security analysis of 
the audit matrix. In [20], we have proposed an algorithm FINDING_GARBAGE 
based on the concept that garbage columns and rows are related. Whenever an 
individual is deleted, the algorithm is able to find all the columns and rows related the 
new dangling column. If these columns are also dangling, then these columns and 
rows are all garbage and can be removed. 

Although we can use this method to reduce the memory requirement and improve the 
performance of Chin's audit scheme, FINDING_GARBAGE itself also introduce 
overhead for the deletion of individuals from an SDB. In section 4, we will introduce 
a new scheme to construct the knowledge space of the SDB. It uses less space to 
maintain the audit matrix, and its garbage information in the knowledge space can be 
easily found and removed without the need of invoking the FINDING_GARBAGE 
procedure. 

Figure 6. A related set
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3.3.4 Partitioning 

The basic idea of partitioning is to cluster individual entities in a number of mutually 
exclusive subsets, called atomic populations [17]. The statistical properties of these 
atomic populations constitute the raw materials available to the database users. As 
long as atomic populations do not contain precisely one individual record, a high 
security level can be attained. 

Schlorer [12] has investigated a large number of practical databases and found that a 

considerable number of atomic populations with only one entity will emerge. 

Clustering such populations with larger ones leads to serious information loss. 

In order to cope with the problem of atomic populations of size 1, it was proposed in 
Chin and Ozsoyoglu [17], to add dummy records to the database. However, bias will 
be suffered from it. 

3.3.5 Cell Suppression 

Cell suppression [19] is one of the techniques typically used by census bureaus for 
data published in tabular form. Cell suppression has been investigated for static SDBs. 
The basic idea is to hide the cells that may cause confidential information to be 
disclosed. Other cells of non-confidential information which may lead to a disclosure 
of some confidential information also have to be suppressed (this is called 
complementary suppression). 

Cox [19] has studied the determination of complementary suppressed cells. He shows 
that the determination of a minimum set of complementary suppression involves a 
great deal of computational complexity. So cell suppression is limited by the 
computational complexity of the analysis procedure of determining the 
complementary suppressed cells. And the set of all possible statistics for a database 

with N fields of attributes in each record corresponds to an N-dimensional table. 
When N is large, applying cell suppression to a table of this size may not be tractable. 

In [6], they show that cell suppression becomes impractical if an arbitrary complex 
syntax for queries is allowed. (With such syntax, suppression of complete tables from 
the lattice model might be necessary.) 

4. Audit Scheme for Dynamic SDBs 

Although the traditional audit approach mentioned in section 3 can guarantee the 
security of SDBs and provide precise responses, it is impractical for dynamic SDBs 
since the CPU time and storage space explosion problem. In this section, we will 
introduce an audit scheme which needs less storage space for auditing users’ queries. 



Thus the CPU time of analyzing the security of SDBs is also reduced [20]. Since the 
cost is significantly reduced, the audit scheme will be suitable for dynamic SDBs.  

In the statistical queries of SDBs, individuals with the same characteristics tend to be 
queried together, and individuals with different characteristics tend not to be queried 
together. It is possible to speed up the security analysis process by taking advantage of 
the characteristics. 

Let Gj represent the set of individuals that were always queried together. The 
knowledge space in our scheme is represented as a set of vector spaces, VS1, 
VS2,...,VSm, and an untouched set Z of never accessed individuals. VSi provides the 
knowledge regarding to the individuals that were accessed at least in a query. VSi is 

represented in the matrix form where the columns are associated with the groups, the 
rows are linearly independent answered query vectors, and its entry indicates the 
status of the groups. A ‘1’ entry indicates that all individuals of a group are accessed. 
A ‘0’ entry indicates that all individuals of a group are not accessed. 

There are three operations that are used to reconstruct the VS set: creating new VSs 
and new groups, splitting groups, and merging independent VSs into a new one. We 
will discuss them in the following. 

4.1 The Operations of the Audit Scheme 

Creating New VSs and New Groups  
If some individuals in Z are queried by a new answered query, they will form a new 
group. If all the queried individuals belong to Z, a new vector space VSi is created 

which only contains a single column associated with the new group since the new 
group is never queried together with other groups. If only a subset of the queried 
individuals belongs to Z, a new column associated with the subset will be added to the 
VSi whose groups are also queried in the new answered query. As an example, assume 
that initially the VS set are empty, and the set Z contains all individuals x1, x2,...,and 
x7. When the first answered vector is invoked, the individuals which are accessed in 

this query should be grouped together and the others should remain in the Z set. If the 

first vector is 1q  = (1,0,1,0,1,1,1), then 

[ ]1=1VS
1G

, where },,,,{ 765311 xxxxxG =  and },{ 42 xxZ = .
 

Assume the second vector 2q  = (0,1,0,1,0,0,0) is invoked. The accessed individuals 



in 1q  and 2q  are totally unrelated, and therefore a new vector space VS2 and a new 

group G2 are created. At the same time, the Z set must also be changed. Therefore, the 

VSs become 

and         , where },,,,{ 765311 xxxxxG = , },{ 422 xxG = , and φ=Z .[ ]1=1VS
1G

[ ]1=2VS
2G

 

Splitting Groups  
When individuals that have been always queried together and included in the same 
group are not queried together in the new answered query, the group must be split. 
Because there are only two possible values, 0 or 1, in an answered vector, the group 
must be split into two new groups: one group associated with the 1's and the other 
group associated with the 0's in the new answered vector. The two new columns 
associated with the two new groups have the same values as the old column 
associated with the original group. A new row will also be inserted into the new vector 

space VSi. With the same example above, assume that the third answered query is 3q  

= (0,0,1,0,1,0,0), where only x3 and x5 are queried together. Thus, G1 is split into two 
new groups, G1 and G3. The new VS1 and groups are listed as follows: 





= 10

11
1VS

1G 3G

[ ]1=2VS
2G

, where },,{ 7611 xxxG = , },{ 422 xxG = , },{ 533 xxG = ,

       and φ=Z .

Notice that, except the second row in the new VS1, the two new columns associated 
with the new G1 and G3 have the same values as the old one associated with the old 
G1. 

Merging the VSs 
When the individuals of different VSs are queried together, these VSs must be merged 
into a new one. Thus, a h×m VSi and a k×n VSj will be merged into a (k+h)×(n+m) 
VSk. The k×n VSj must be expanded by padding with m all-‘0’ columns before 
merging with a h×m VSi. Similarly, the h×m VSi also need to be expanded by padding 

with n all-‘0’ columns. Using the previous example, assume that the fourth query 

4q =(0,1,1,1,1,0,0) is invoked, then VS1 and VS2 are merged because that G2 and G3 

are queried together. Note that the new query vector will not be inserted into the new 
VS1 because it can be computed as r2+r3, and thus is not linearly independent of the 
rows of VS1. The merging process is shown as follows: 







= 10

11
1VS

1G 3G

[ ]1=2VS
2G





= 010

011'1VS
1G 3G 2G

[ ]100' =2VS
1G 3G 2G












=

100
010
011

1VS

1G 3G 2Gexpand
and pad merge '1VS  with '2VS

The VS set is reconstructed if any of the three operations described above is invoked 
by a new answerable query. The reconstruction of the VS set is scarcely needed if 
individuals with similar characteristics tend to be queried together, and individuals 
with the different characteristics tend not to be queried together in the answered 
queries. In this case, the time spent on reconstructing the VSs can be ignored. 

With the VS set presented in our scheme, we are able to distinguish illegal queries. 
The checking process within a VS is similar to that within a KS in Chin's scheme. An 
SDB is compromised if there exists a row containing a single ‘1’-entry in its VSs and 
the corresponding group contains only a single individual. Otherwise, the SDB is still 
secure after answering the query.  

4.2 Updates in A Dynamic SDB 

The insertion and deletion of individuals in our scheme is easy. In a dynamic SDB, 
whenever a new individual is inserted into the SDB, the individual is directly inserted 
into the set Z because it is never accessed before. On the other hand, when an 
individual is deleted from the database, it can be removed from Z without modifying 
VSs if it belongs to the set Z. Otherwise, we must consider two cases. Assume that the 
deleted individual xi belongs to the group Gj which is contained in VSk. In the first 
case, Gj contains at least one individual, excluding xi, that has not yet been deleted. 
All we have to do is to mark xi as deleted. In the second case that all individuals, 
except xi, contained in Gj have been marked as deleted, Gj must be marked as deleted. 

If a group is marked as deleted, the system herein check whether all groups in the 
same VS are deleted. If all groups of this VS are deleted, then the VS and its groups 
can be removed. Since the check is very simple, the cost will be limited and ignored. 
(Refer to [20] for the details of deletion.) 

In the traditional audit approach, e.g. Chin's scheme, it takes no more than O(KN) 

steps to check the security of the SDB and determine whether a new query vector q  

∈ K×N KS [13], where N is equal to the sum of the total number of individuals in an 
SDB (na) and that of the deleted ones (nd). In our scheme, consider an average case 

where each group contains u individuals and each vector space contains equal number 
of columns (n) and rows (k). The complexity of our scheme for checking the security 



of the SDB becomes O(k×n), which can also be represented as O(
uv
N

v
K

× ). 

Furthermore, in a dynamic SDB where ninety percent of the individuals (nd/N = 90%) 

are deleted and their corresponding columns are garbage, the complexity can be 

further reduced to O(
uv

N
v

K
1010

× ). Comparing with the O(K×N) of Chin's scheme, our 

scheme performs better. 

 

Reference 

[1]  M. Mogenstern, "Controlling logical inference in multilevel database systems," 
Proc. IEEE CS Symp. Security and Privacy, pp.245-255 (Apr. 1988). 

[2]  H. S. Delugach and T. H. Hinke, "Wizard: A database inference analysis and 
detection system," IEEE Tran. on Knowledge and Data Engineering, Vol.8(1), 
pp.56-66 (Feb. 1996). 

[3] J. C. Wortmann and N. R. Adam, "Security-Control methods for statistics 
databases: A comparative study," ACM Computing Surveys, Vol. 21(4) pp. 
515-554 (Dec. 1989) 

[4] F. Y. Chin and G. Ozsoyoglu, "Statistical database design," ACM Trans. on 
Database Syst. Vol. 6(1) pp. 113-139 (Mar. 1981). 

[5] D. E. Denning, "A security model for the statistical database problem," In 
Proceedings of the 2nd International Workshop on Management, pp. 1-16 (1983). 

[6] D. E. Denning and J. Schlorer, "Inference control for statistical databases," 
Computer, Vol. 16(7) pp. 69-82 (July 1983). 

[7] D. E. Denning, "Secure statistical databases under random sample queries," ACM 
Trans. on Database Syst. Vol. 5(3) pp. 291-315 (Sept. 1980) 

[8] G. Ozsoyoglu and T. A. Su, "On inference control in semantic data models for 
statistical databases," Journal of Computer and System Sciences, Vol.40(3), 
pp.405-443 (Jun. 1990). 

[9] S. B. Reiss, "The practicality of data swapping," Technical Report No. CS-48, 
Dept. of Computer Science, Brown Univ., Providence, R.I. (1979). 

[10] S. B. Reiss, "Practical data-swapping: The first steps," In Proceedings 1980 
Symp. on Security and Privacy, IEEE Computer Society pp. 38-45 (Apr. 1980). 

[11] S. B. Reiss, "Practical data-swapping: The first steps," ACM Trans. on Database  
Syst. pp. 20-37 (Mar. 1984). 

[12] J. Schlorer, "Security of statistical databases: Multidimensional transformation," 
ACM Trans. on Database Syst. Vol. 6(1) pp. 95-112 (Mar. 1981). 



[13] J. F. Traub, Y. Yemini and H. Wozniakowski, "The Statistical Security of a 
Statistical Database," ACM Trans. on Database Syst, Vol. 9(4) pp.672 - 679 (Dec. 
1984). 

[14] D. E. Denning, "Cryptography and Data Security," Addison-Wesley, Reading 
Mass. 

[15] D. Dobkin, A. K. Jones and R. J. Lipton, "Secure databases: Protection Against 
User Inference," ACM Trans. on Database Syst. Vol. 4(1) pp. 97-106 (Mar. 
1979). 

[16] F. Y. Chin and G. Ozsoyoglu, "Auditing and inference control in statistical 
databases," IEEE Trans. on Softw. Eng. pp. 574-582 (Apr. 1982). 

[17] F. Y. Chin and G. Ozsoyoglu, "Security in partitioned dynamic statistical 
databases," In Proceedings of the IEEE COMPSAC, pp. 594-601 (1979) 

[18] M. McLeish, "Further result on the security of partitioned dynamic statistical 
databases," ACM Trans. on Database Systems, Vol.14(1), pp.98-113 (Mar. 1989). 

[19] L. H. Cox, "Suppression methodology and statistical disclosure control," J. Am. 
Stat. Assoc. Vol. 75(370) pp. 377-385 (June 1980). 

[20] Shiuh-Pyng Shieh and Chern-Tang Lin, “Auditing user queries in dynamic 
statistical databases,” Information Science, Vol. 113(1-2), pp. 131-146 (Jan. 
1999). 

[21] Denning, D. E., Denning, P. J. and Schwartz, M. D., “The tracker: A threat to 
statistical database security,” ACM Trans. on Database Syst. Vol. 4(1) pp. 76-96 
(Mar. 1979). 


