
Multimedia Tools and Applications, 9, 277–294 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Playback Dispatch and Fault Recovery
for a Clustered Video System with Multiple Servers

ING-JYE SHYU ejshue@dscs2.csie.nctu.edu.tw
SHIUH-PYNG SHIEH ssp@csie.nctu.edu.tw
Department of Computer Science and Information Engineering, National Chiao Tung University, Hsinchu, 30010,
Taiwan, R.O.C.

Abstract. Recent technology advances have made multimedia on-demand services feasible. One of the chal-
lenges is to provide fault-tolerant capability at system level for a practical video-on-demand system. The main
concern on providing fault recovery is to minimize the consumption of system resources on the surviving servers
in the event of server failure. In order to reduce the overhead on recovery, we present three schemes for recovering
faulty playbacks through channel merging and sharing techniques on the surviving servers. Furthermore, to evenly
distribute the recovery load among the surviving servers, we propose a balanced dispatch policy that ensures load
balancing in both the normal server conditions and the presence of a server failure.

Keywords: fault tolerance, fault recovery, distributed multimedia systems, video-on-demand systems

1. Introduction

Video-on-demand (VOD) applications have recently received much attention from the
telecommunications, entertainment and computer industries [3–5]. However, to provide
VOD service demands high computing power and network bandwidth. Thus in this paper
we propose an architecture which clusters a set of video servers for providing VOD services,
as shown in figure 1. The VOD system consists of adispatch server, a video archiveand
multiple cooperativevideo servers, which are connected by a high-speed circuit. The client
requests/receives video data through the set-top-box. Each video server equips with a disk
array which caches the most recent videos requested by the clients. Thevideo archiveis
the repository of all videos. Viewer requests are first transmitted to the dispatch server via
access networks and then dispatched to appropriate video servers for obtaining playback
services. The video server retrieves the desired video either from its disk array or from the
archive server.

The design of clustering a set of video servers is to provide fault-tolerant capability.
For commercial VOD applications, fault tolerance is one of the most important issues.
The common approach to providing fault tolerance uses redundancy, that is, organizing the
redundant components as eitheractive replicationor primary backup units[1, 2, 7, 9, 10,
13]. In the primary backup scheme, the backup server is idle in the normal state and becomes
active when the primary server fails. The drawback of this scheme is low utilization of the
backup server. As for the active replication scheme, all servers work in parallel. When
one of the servers fails, the workload on the failed server are transferred to the surviving
servers. However, the workload transferred will overload some of the surviving servers if the



278 SHYU AND SHIEH

Figure 1. The architecture of a clusteredn-server video system.

workload are not evenly distributed. Thus, to provide an effective fault-tolerant methodology
under the consideration of minimizing the recovery overhead is the key focus of this paper.
To cope with these problems, we propose three recovery schemes which reduces the recovery
overhead while recovering the failed playbacks in the surviving video server.

To maintain workload and recovery load balancing among the video servers is the next
key issue. T.D.C. Little and D. Venkatesh describe a probabilistic placement method that
distributes videos to multiple disks [11]. Y. Wang et al. present some heuristic algorithms
to place video files over the storage systems [15]. The IVSDNA prototype primarily de-
scribes network design methodologies for a scalable, fault-tolerant interactive video system
[16]. All these papers use different methodology to distribute the workload to different
system components. In this paper, we focus on design of the dispatch policy to control the
distribution of video playbacks to meet both the balance and reliability requirements.

We will also discuss how to dispatch the viewers’ playback requests such that the workload
and recovery load are evenly distributed among the servers under normal condition as well
as stress conditions (server failure or disk-array failure). In Section 2, we will present three
recovery schemes, which are classified by the consumption of system resources, and a
selection algorithm which instructs the surviving server to perform recovery by allocating
the fewer system resources. Section 3 will present a dispatch policy to achieve even workload
among the video servers under normal conditions, and even recovery load distribution in
the presence of server failure. In Section 4, simulations are conducted to demonstrate the



PLAYBACK DISPATCH AND FAULT RECOVERY 279

effectiveness of the proposed schemes and policies. Section 5 concludes this paper and
gives the future work.

2. Playback recovery

In this section three distributed playback-recovery schemes are presented, which are de-
signed for the playback systems with clustered video servers. Accordingly, we propose a
recovery selection algorithm for determining the best recovery scheme which exhausts the
fewer resources in the surviving servers.

2.1. Notation and definitions

For clarity, we give some notations and definitions. Achannelis defined as a set of system
resources for providing a video playback, including anetwork streamto transfer video data
to viewers, adisk I/O streamto read video data from the storage to system buffers, and
intermediatebuffersfor caching video data between the network stream and the disk I/O
stream. We assume that a video object is composed of a series offrames, and an I/O stream
reads the frames from the storage to the buffers before delivering them to the viewers. Let
PM denote the total number of frames in a video object. The current frame position read by
an I/O stream of a channelC is denoted byPc(C), of which the value ranges from 0 toPM .

The network equipment allows the various viewers to share a channel for watching the
same video. This capability is calledmulticasting[2, 6, 16]. Based on the multicasting
mechanism, we can dynamically alter the progress speed of playbacks to enable different
channels being merged or shared to improve resource utilization [8]. The playback speeds of
a channel are classified asSMIN , SMAX andSNORMAL. Videos are usually played atSNORMAL

speed, which is about 30 frames per second.SMAX is 5% faster thanSNORMAL andSMIN is
5% slower thanSNORMAL (There is an ample evidence indicating that effective display rates
within±5% of SNORMAL are not perceivable by viewers [8]). Letgap time G(C1,C2) be the
distance in terms of frames between two I/O streamsC1 andC2. The channel in the failed
server is specially calledfailed channel, denoted byCF .

2.2. Recovery schemes

Due to hardware limitation, the number of the channels a video server can support is
limited. Therefore, a recovery scheme should consume as few channels during recovery as
possible. Once all channels have been consumed for recovery, the server will not be able
to provide additional playbacks for viewers during the recovery period. Thus we propose
three recovery schemes which have different system resource requirements for recovery.
In the system normal condition, the clustered video servers exchange and monitor the
active/failure events through the internal high-speed channel. When detecting the failure
of one of the video servers, the following recovery schemes are adopted by the surviving
servers to recover the failed playbacks.



280 SHYU AND SHIEH

2.2.1. Recovery by allocation (RBA) scheme.This scheme is the most general method.
It allocates new channels, called therecovery channels, on the surviving servers and uses
these channels to replace the failed channels in the failed video server. The recovery channel
re-reads the same video object from the frame which the failed channel was reading, and
then delivers it to the original viewers. Thus all viewers originally served by the failed
channel can continue watching their video from the interrupted frame onward. This scheme
achieves a fast response to server failures but requires new channel resource to perform
playback recovery.

2.2.2. Recovery by merging (RBM) scheme.This scheme progressively merges channels
that are serving the same video object. As in the RBA scheme, a recovery channelCR is
allocated to recover from the failed playbacks. Moreover, if a channelCM , located on the
same server asCR, plays the same object asCF but was activated afterCF , CM andCR

can be progressively merged by altering their playback speeds fromCR to SMIN andCM to
SMAX , as shown in figure 2(a). After merging, the playback rate is readjusted toSNORMAL,
and a channel can be released because the viewers served byCR andCM now share a single
channel through multicasting. The purpose of the merging process is to reduce the holding
time of the allocated channelCR. The merging position of these two channels in terms of
frames, denoted byPm(CR,CM), is derived by Eq. (1), which states that the I/O streams of
CR andCM will meet at framePm. The feasibility of the merging process is evaluated in
Eq. (2) under the constraint that the merging process must be completed before the playback
is over.

(Pm(CR,CM)− Pc(CR))/SMIN = (Pm(CR,CM)− Pc(CM))/SMAX . (1)

Pm(CR,CM) ≤ PM (2)

The difference between RBM and RBA is the reduced holding time for the recovery channel.
To minimize the channel holding time, it is important to select the right server to allocate
the recovery channel. The selection criteria is that the server chosen must have a channel
CM which was activated afterCF and has a minimal gap time withCR, (i.e.,G(CR,CM)

is minimal). In the next section, we present a dispatch policy which enables the server to
select a failed playback to perform recovery.

Figure 2. (a) The recovery by merging scheme; (b) The recovery by sharing scheme.



PLAYBACK DISPATCH AND FAULT RECOVERY 281

2.2.3. Recovery by sharing (RBS) scheme.This scheme directly uses an existing channel
to provide playback for the failed channel. If the viewers can accept a period of repetition
prior to continuation of the interrupted video, the playback may be directly recovered by
a channelCS currently running after frame positionPc(CF ), which satisfies the condition
G(CF ,CS) ≤ TR, whereTR is the maximal replay length that viewers can tolerate, as
shown in figure 2(b). The advantage of this scheme is that it does not require resources
on the recovery server because the recovery uses an existing playback channel to perform
recovery. However, in the scheme, viewers incur replays of(Pc(CF )− Pc(CS))/SNORMAL

seconds. The selection ofCS also has a significant effect on the replay length. Therefore, a
surviving server with a channelCS that has a minimalG(CF ,CS) is preferred.

2.3. Recovery scheme selection

The RBS scheme uses fewer resources while performing recovery, but it requires the ex-
istence of a channel playing the same object within theTR. The RBM scheme allocates a
temporary channel to provide playback, but releases it after playback is merged with another
existing channel. Compared with RBS and RBM, RBA is more interactive because the re-
covery does not require an existing playback. However, RBA consumes a channel until the
playback is complete and thus incurs the most overhead on the server. Considering the min-
imization of the recovery overhead, the RBS scheme is the best preferable while selecting,
followed by the RBM scheme, and then the RBA scheme. ARecovery-Scheme-Selection
algorithm is presented in short below which is based on these selection principles.

Algorithm. Recovery-Scheme-Selection Algorithm
Input: CF = the failed playback.

TR= the replay length that viewers can tolerate.
Begin

if ∃ CS such thatPc(CS) ≤ Pc(CF ) andG(CS,CF ) is the smallest onethen
{

if G(CS,CF ) ≤ TR then
RBS is applied.

else if a free channel is availablethen
{

if RBM is feasible (i.e., Eqs. (1) and (2) hold)then
RBM is applied.

else
RBA is applied.

}
else
{

unable to perform recovery.
}

}



282 SHYU AND SHIEH

else if a free channel is availablethen
{

RBA is applied.
}
else
{

unable to perform recovery.
}

End

When the server has not enough resources to provide recovery, the server signals the viewers
a failure on server and asks the viewers to re-subscribe the video again.

As the event of a server failure is detected, the surviving servers run this algorithm to
select an appropriate scheme for each failed channel. However, in a distributed environment
a decision problem arises: determining the server with the channel nearest the failed one is
difficult. This problem may be solved by dispatching playback requests in a pre-determined
sequences. This enables us to determine where the nearest channel locates. In the next
section, we propose a dispatch policy that pre-determine the dispatch sequence of each video
to the video servers and thus the policy achieves workload and recovery load balancing.

3. Balancing workload and recovery load

Viewer requests for obtaining playbacks are dispatched by the dispatch server to video
servers. The dispatch server plays an important role to control the workload balancing
among the video servers. In this section, we propose a special dispatch sequence for the
dispatch server, thus workload balancing are achieved under the normal state and the failure
of a server.

3.1. Playback request dispatch

A server’s load can be characterized by the number of the active channels it has at any
given time. The number of active channels is determined by the number of playback re-
quests dispatched to that server. Thus, the dispatch policy used by the dispatch server will
determine the degree of workload balance among video servers. The common dispatch
policy balances load with around-robin dispatch policy. For ann-server video system, the
round-robin dispatch policy sequentially dispatches incoming requests to video servers to
order playbacks. If the video server to which a request has been dispatched runs out of
free channels, the request is queued in the dispatch server until a channel on that video
server becomes available, even though other video servers may have free channels. Thus,
the numbers of channels in use by all video servers will be the same. If in the meantime
another request arrives also asking for the same object as the pending request, these two
requests will be serviced together by dispatching both to a common channel later (through
multicasting). The example in figure 3(a) shows requests being dispatched to four servers
in this round-robin manner. These servers in turn allocate channels to provide playbacks.



PLAYBACK DISPATCH AND FAULT RECOVERY 283

Figure 3. (a) The round-robin dispatch policy; (b) The balanced dispatch policy.

This figure shows the time each channel is created. Consequently, the playback workload
is evenly distributed among all servers.

Unfortunately, the round-robin dispatch policy leads to unbalanced load distributions
when the recovery schemes are used to recover from a server failure. According to the
recovery schemes, the channels nearest the failed channels are chosen to perform playback
recovery in order to reduce the holding time or replay length. With the round-robin dis-
patch policy, the nearest channels are all located on the same server. As the example in
figure 3(a) shows, if server 2 fails, the channels in server 3 are the nearest ones to the failed
channels. That is, if server 3’s channels are used to recover from the server 2’s interrupted
playbacks, the recovery overhead, including the holding time of the temporary channels
(for the RBM scheme) and the amounts of video replays to viewers (for the RBS scheme),
will be minimized. However, it also leads to unbalanced distribution of the recovery load.
Therefore, although the round-robin dispatch policy can balance workload distribution, it
unfairly distributes recovery load to some dedicated server (if serveri fails, all the recovery
load fall on serveri + 1).

3.2. The proposed balanced dispatch policy

In order to avoid unbalanced recovery-load distributions, we propose a policy, called the
balanced dispatch policy, which uses a specially designed sequence to control the dispatch
of a viewer’s request to one of the video servers. The special sequence are called the
Balanced n-Cyclic code(BnC code). The BnC code is a cyclic sequence of the format
{G1,G2, . . . ,Gn−1}, where each segmentGi is composed ofn distinct numbers from 1
to n, and a cycle hasn × (n − 1) numbers in total. This code guarantees an important
property: for any two continuous numbers in any two segments, i.e.,Gk = (. . .ei ei+1 . . .)

andGl = (. . .ej ej+1 . . .), if ei = ej , thenei+1 6= ej+1, where 1≤ l , k ≤ n− 1 andl 6= k.
We have given a formal definition of the BnC code and proved that finding a BnC code for a
givenn is an NP-complete problem [14]. In Appendix A.1 we present an efficient heuristic
algorithm to generate BnC codes for a largen.

An example of the B4C code is{1, 3, 2, 4, 1, 2, 3, 4, 3, 1, 4, 2}, which is used as a sequence
to control playback dispatch, whereG1 = 1,3,2,4, G2 = 1,2,3,4 andG3 = 3,1,4,2.
That is, requests are dispatched to servers according to the server order: 1, 3, 2, 4, 1, 2, 3,
4, 3, 1, 4, 2, and loops to the beginning, as shown in figure 3(b). Thus, according to this
dispatch sequence, channels are evenly allocated among servers. Furthermore, in the event
of a failure, no matter which server fails, the recovery load can be also fairly distributed to



284 SHYU AND SHIEH

the surviving servers by BnC inherent property. For example, assuming server 2 fails, the
playbacks onC3, C6 andC12 are recovered byC4, C7 andC13 (the nearest channels) which
are located respectively at servers 4, 3 and 1 when the RBM or RBS scheme is applied.
If these two schemes cannot be applied due to condition mismatches, the RBA scheme
is performed instead also by servers 4, 3 and 1. In this way, the balanced dispatch policy
can effectively balance workload and recovery load among video servers in both normal
conditions and fault recovery.

3.3. The recovery load balancing for multiple videos

Single-video balancing involves channels playing the same video object on various video
servers. When a server fails, the surviving servers can easily determine which failed channels
it should recover for through the information of the pre-determined dispatch sequence, and
these servers adopt a lower cost recovery scheme according to the Recovery-Scheme-
Selection algorithm described in Section 2.3.

To support playing multiple videos simultaneously is also dealt with the same manner.
We assign the same BnC code to each video as its dispatch sequence. According to the
characteristics of the BnC code, channels for playing the same video object will be in
balancing states with the point of long-term view. However, because of the usage of the
same BnC code, a short-term unbalance of the system workload will occur at the beginning
of the system startup. In order to eliminate the initial unbalanced situation, we present
a shifted dispatch sequence as follows to balance both workload and recovery load for
the case of supporting multiple video objects. Assume that a video system withm videos
supported, thesem video objects are sorted according to their popularity (as determined
by request arrival rates) [12] in the first. Each video is assigned the same BnC code as
its dispatch sequence, but each sequence has a different starting position. The starting
position of the objectk’s dispatch sequence is shifted right byn numbers from the starting
position of objectk−1. Similarly, for the round-robin dispatch policy, the starting position
of the objectk’s dispatch sequence is shifted right by one number from the starting position
of objectk−1. Table 1 lists theshifted dispatch sequencesfor both policies. For the dispatch
sequence without the shift is called thenon-shifted dispatch sequenceas compared with
the shifted dispatch sequence. In the simulation of Section 4, we compare the effects of the
shift and non-shift dispatch sequences.

Table 1. The shifted dispatch sequences form video objects.

The balanced dispatch policy The round-robin dispatch policy

Video 1 {G1,G2, . . . ,Gn−1,Gn−1} {1,2, . . . , n− 1,n}
Video 2 {G2,G3, . . . ,Gn−1,G1} {2,3, . . . ,n,1}
. . .

Videom {Gk,Gk+1, . . . ,Gn−1,G1, . . . ,Gk−1} {k, k+ 1, . . . ,n,1, . . . , k− 1}
wherek=m modn wherek=m modn



PLAYBACK DISPATCH AND FAULT RECOVERY 285

4. Performance evaluation

Two sets of simulations are conducted in this section. The first one concerns with the effects
of various recovery schemes. The second one simulates the variation of the balance degree
of the workload and recovery load among video servers over the course of a week.

4.1. Simulation model and parameters

In our simulation, the number of video objects,m, is set to twenty. The movie length is
fixed at 1.5 h. In the normal condition, the video playback speedSNORMAL is 30 frames per
second (fps). While applying merging operation,SMIN andSMAX are adjusted to 28 and 32
fps respectively. The arrival distribution of viewer requests coming to the dispatch server
is aPoissonprocess characterized by themean inter-arrival time(MIAT). The probability
of an arrival request for a specific object is determined by the object’saccess frequency.
The access frequencies of all the video objects in our simulation are characterized by a
Zipf ’s distribution with the parameter 0.1386 (In aZipf distribution, if the objects are sorted
according to the access frequency, then the access frequency for thei th object is given
by fi = c/ i (i−θ), whereθ is the parameter for the distribution andc is the normalization
constant [10, 17]. The assignment of 0.1386 toθ implies that 80% of the viewers ask for
20% of the objects, and the remaining 20% of the requests are for 80% of the objects.
This phenomena is called the 80-20 rule. This rule makes the design of a video system
more realistic by exploring the different popularity between popular videos and unpopular
videos).

Requests for objects are thus dispatched to the proper video servers by the dispatch server
according to each object’s dispatch sequence, and the access frequency determines which
video object the dispatched request asks for. In our simulation, if we do not apparently
indicate the number of video servers involved in the simulation, the video system was
assumed to be consisted of six video servers. Each object was assigned a shifted B6C
code as its dispatch sequence for the balanced dispatch policy (the B6C code is listed in
Appendix A.2). As for the round-robin dispatch policy, each object’s dispatch sequence
was determined according to the sequence listed at the right side of Table 1.

4.2. Comparison of various recovery schemes

In the first set of simulations, the dispatch server uses the balanced dispatch policy to dispatch
each request. When a server failed, each video server invokes the Recovery- Scheme-
Selection algorithm to pick suitable recovery schemes for the failed playbacks. MIAT
herein is set to 60 s andTR 5 min. The period of a server failure sampled in this simulation
is set to an hour during the course of a week. That is, at every hour, assume a server fails
and the percentage of the recovery schemes used by the surviving servers is counted. This
value of the percentage is denoted asrecoverability. Themean recoverabilityis calculated
by averaging all the recoverability sampled for every hour during the course of a week.
This value reflects the feasibility of each proposed recovery scheme. Table 2 shows the
respective mean recoverability for different combination of the server number (N) from



286 SHYU AND SHIEH

Table 2. The effects of the recovery schemes.a

For N = 4 andD values of: ForN = 5 andD values of: ForN = 6 andD values of:

1 2 3 4 1 2 3 4 5 1 2 3 4 5 6

RBS 35.0 32.6 35.3 35.0 33.7 34.8 33.8 36.2 34.4 34.9 33.2 35.7 34.3 35.4 33.7

RBM 20.0 20.6 19.9 20.8 20.3 21.0 21.2 18.9 20.3 20.2 21.0 19.9 21.2 19.8 20.3

RBA 45.0 46.8 44.7 44.1 46.0 44.1 45.1 44.9 45.3 44.9 45.7 44.4 44.4 44.8 46.0

For N = 7 andD values of: ForN = 8 andD values of:

1 2 3 4 5 6 7 1 2 3 4 5 6 7 8

RBS 34.7 34.7 35.4 36.6 34.4 34.3 32.8 35.4 33.7 35.2 35.4 34.1 34.3 33.9 35.2

RBM 21.4 19.9 20.5 19.0 20.4 21.3 20.2 20.2 21.0 18.6 21.0 22.0 20.3 21.0 19.1

RBA 43.9 45.4 44.1 44.4 45.2 44.5 47.0 44.3 45.3 46.2 43.6 43.9 45.4 45.1 45.6

aValue given indicate percentage recovery.

4 to 8 under assuming a failed server (D). For example, consider the case ofN = 4 and
D = 1. With the balanced dispatch policy, when server 1 in a four-server system fails,
the simulation shows that 35% of the failed channels will gain playbacks immediately
by the RBS scheme; 20% of the failed channels also gain recovery immediately by the
RBM scheme, which use much more system resource than RBS; only the remaining 45%
of the failed channels are recovered by the RBA scheme. Through the simulation, it is
observed that no matter how many servers are involved, in average, the RBS and RBM
schemes save almost 55% of the free channels compared with those while using the RBA
scheme alone.

The next simulation explored the relationship between the mean inter-arrival time (MIAT)
as well asTR (replay length the viewer can tolerate) and the mean recoverability of each
recovery scheme. The mean recoverability represents how many percentage of the total
failed channels can be recovered by a recovery scheme described in previous paragraph. By
fixing the mean inter-arrival time at a 60 s interval, figure 4(a) shows the mean recoverability

Figure 4. (a) The effect ofTR; (b) The effect of MIAT.



PLAYBACK DISPATCH AND FAULT RECOVERY 287

of the three recovery schemes asTR increases. Note that the mean recoverability of RBS
increases asTR increases. This means that if viewers can tolerate longer video replays, more
failed playbacks (35 vs. 75% of failed channels for 5 vs. 20 min replay duration) can be
recovered by the RBS scheme, saving more free channels while performing recovery. The
remaining playbacks are recovered with RBM and RBA respectively.

Figure 4(b) shows the mean recoverability as the number of requests coming to the system
is reduced. HereTR was held at 5 min. This figure shows the mean recoverability of the RBS
and RBM schemes decreases as MIAT increases, but that of the RBA scheme increases. This
means that an increase of mean inter-arrival time lengthens the time gap between channels
playing the same object. Thus RBS or RBA is inappropriate for use and the probability of
using RBA increases. Thus, if the requests arrived at the system concentrate on a period
of a day, this behavior would result in a shorter MIAT and makes more RBS recovery.
The “skew” property has been proved to be the practical behavior of the video-on-demand
system [2, 10]. The peak of the coming requests locates on a period between 7:00 and
10:00 PM after a hard working day, for example.

4.3. Effects of dispatch policies

The second set of simulations monitored the balance degree of the workload and recovery
load among video servers. A criterionBWL(t) is defined as the standard variation of the
number of the active channels among the videos servers at timet . Larger BWL indicates
more unbalanced workload distribution among servers.

BWL(t) =
√∑N

i=1(Wi (t)− W̄(t))2

N
, whereW̄(t) =

∑N
i=1 Wi (t)

N
,1≤ i ≤ N.

Wi (t) denotes the number of active channels in serveri at time t . W̄(t) is the mean of
Wi (t) for 1 ≤ i ≤ N at time t . Figures 5 and 6 show theBWL for workload transitions
over the course of a week forN = 6. Each point on the line representsBWL at time t
for a specific policy. The reason why we plotted all simulation traces during a week is to
illustrate the variation ofBWL. These figures show that the balanced dispatch policy (BL)

Figure 5. The transitions of theBWL for the non-shifted dispatch sequence.



288 SHYU AND SHIEH

Figure 6. The transitions of theBWL for the shifted dispatch sequence.

and the round-robin dispatch policy (RR) using the shifted and non-shifted sequences have
similar effects and makeBWL have the same value around 2. This simulation demonstrates
that both dispatch policies almost have the same power to balance the workload among the
video servers. The improvement is that at the beginning of the lines in these figures we can
observed that the shifted dispatch sequence makesBWL more stable around the value 2 than
the non-shifted ones which has a peak value 6 at the beginning. These results stressed that
the workload of a multiple-server video system can be balanced by using the shift dispatch
sequence.

The balancing states of the recovery load is the next case to be simulated. A criterion
B j

RL is used to evaluate the balance degree of the recovery load distribution when assuming
the serverj fails.

B j
RL(t) =

√∑N
i=1

(
Rj

i (t)− R̄j (t)
)2

N
, whereR̄j (t) =

∑N
i=1 Rj

i (t)

N
,1≤ i ≤ N, i 6= j .

Rj
i (t) denotes the number of channels which serveri has to recover for after serverj fails at

time t , no matter which recovery scheme is applied. Thus, the summation ofRj
i is the total

number of channels in serverj that need recovery, wherei 6= j . B j
RL represents the standard

variation of Rj
i , where 1≤ i ≤ N and i 6= j . Figures 7–10 show theB j

RL transitions
in recovery-load distributions for shifted and non-shifted dispatch sequences using the

Figure 7. The transitions of theB j
RL for the non-shifted round-robin dispatch policy.



PLAYBACK DISPATCH AND FAULT RECOVERY 289

Figure 8. The transitions of theB j
RL for the non-shifted balanced dispatch policy.

Figure 9. The transitions of theB j
RL for the shifted round-robin dispatch policy.

Figure 10. The transitions of theB j
RL for the shifted balanced dispatch policy.

round-robin and balanced dispatch policies, respectively. The reason why we plotted all the
diagrams with the samey scale is to make a clear comparison between the results of different
simulations. Each point on linej represents aB j

RL when serverj fails at that time instant.
Figures show that the value ofB j

RL of the balanced dispatch policy is obviously smaller than
that of the round-robin dispatch policy in general. This means that the balanced dispatch
policy distributes recovery load more evenly among surviving servers than the round-robin
dispatch policy does. Furthermore, figures 10 and 8 show that the value ofB j

RL by using
the shifted dispatch sequence has the lower value than that by the non-shifted sequence for



290 SHYU AND SHIEH

the balanced dispatch policy. This means that the shifted balanced dispatch policy assures
the balanced recovery-load distribution even during the server startup periods. According to
the two sets of simulations above, we can conclude that the shifted balanced dispatch policy
balances workload and recovery load, but the round-robin dispatch policy only balances
workload.

5. Conclusion

In this paper, three playback recovery schemes are proposed to recover from video server
failures in a clustered multiple-server video system. The RBA scheme always allocates a
new channel while performing recovery. However, the RBM and RBS schemes significantly
reduce the recovery overhead imposed on surviving servers. We have also presented two
dispatch policies, the round-robin dispatch policy and the balanced dispatch policy, to
control the workload and recovery load distributed to the video servers. The simulation
results show that the proposed balanced dispatch policy effectively balances workload
among the video servers not only under normal system conditions, but also in recovery
process after server failures.

The balanced dispatch policy can evenly distribute the workload and recovery load among
the servers. However, the configuration after tolerating a server failure can no longer provide
balanced recovery load distribution when a second server failure occurs. In the near future,
we hope to design a special dispatch policy which makes the recovery load distribution near
balanced while recovering the second or more server failures.

Appendix A

A.1. An efficient heuristic method for finding a BnC code

Since we have proved that finding a BnC code is an NP-complete problem [14], in this
appendix we give anO((n− 1)!) time complexity heuristic algorithm, theFind-BnC-code
algorithm, which can efficiently generate a BnC code from a B(n− 1)C code. The idea be-
hind of this algorithm is to insert the numbern into some special positions in the B(n−1)C
code to form a BnC code.

Algorithm. Find-BnC Code
Input: a B(n− 1)C code.
Output: a BnC code.
Begin

Step 1.Represent the input B(n − 1)C code as a series of connected arcs,(e1,e2),
(e2,e3), . . . , (e(n−1)×(n−2),e1), in whichei is thei th number in the B(n−1)C code.

Step 2.Partition the arcs in Step 1 inton−1 groups in which each groupRi consists of
arcs from(e(n−1)×(i−1)+1,e(n−1)×(i−1)+2) to (e(n−1)×i ,e(n−1)×i+1), where 1≤ i ≤
n− 2.

Step 3.Select one arcs(vi , wi ) from every Ri such that allvi are distinct, where
1≤ i ≤ n− 2.



PLAYBACK DISPATCH AND FAULT RECOVERY 291

Step 4.Step 3 produces total (n− 1)! combinations. For each combination, two arcs
(n, wx) and(vx,n) are generated, where 1≤ vx, wx ≤ n− 1, vx 6= wx, vx /∈ {vi |
1 ≤ i ≤ n− 2} andwx /∈ {wi | 1 ≤ i ≤ n− 2}. Then check thesen arcs to see
whether they form a Hamilton cycle. If yes, go to Step 5. Otherwise, go to Step 3
and try the next combination. When all the combinations have been tested and no
Hamilton cycle is found, it means that the algorithm cannot find a BnC code from
the input B(n− 1)C code.

Step 5.Extend the B(n− 1)C code into a BnC code by

a. inserting numbern at the place located at betweenvi andwi in the
B(n − 1)C code, where(vi , wi ) is the arcs selected in Step 3 and 1≤
i ≤ n− 2.

b. concatenating the formedHamiltoncycle (Step4) to the tail of theB(n− 1)
C code to form a BnC code.

End

Here we use the terminology from graph theory. Thearc (v,w) is a directed edge from
the vertexv to the vertexw. A Hamilton cycleis a path that passes through every vertex
exactly once and returns to the start vertex.

An example is given to illustrate the algorithmFind a BnC code. Assume that we have a
B5C code,{1, 2, 3, 4, 5, 2, 4, 1, 3, 5, 3, 1, 4, 2, 5, 4, 3, 2, 1, 5}. Partition it into four arc groups,
R5

1: (1, 2), (2, 3), (3, 4), (4, 5), (5, 2),R5
2: (2, 4), (4, 1), (1, 3), (3, 5), (5, 3),R5

3: (3, 1), (1, 4),
(4, 2), (2, 5), (5, 4),R5

4: (4, 3), (3, 2), (2, 1), (1, 5), (5, 1). By exploring the computations in
Step 3 and Step 4, we find that arcs (3, 4), (1, 3), (4, 2) and (5, 1) (respectively selected from
groupsR5

1, R5
2, R5

3 andR5
4) as well as two other generated arcs (6, 5) and (2, 6) can form a

Hamilton cycle{1, 3, 4, 2, 6, 5}. We then insert number 6 into the B5C code at the positions
between 3 and 4, 1 and 3, 4 and 2, and 5 and 1, then concatenate the formed Hamilton cycle
{1, 3, 4, 2, 6, 5} to the tail of the B5C code. The B6C code thus obtained is{1, 2, 3, 6, 4, 5,
2, 4, 1, 6, 3, 5, 3, 1, 4, 6, 2, 5, 4, 3, 2, 1, 5, 6, 1, 3, 4, 2, 6, 5}.

Step 5a extends the B(n− 1)C code by removing arc(vi , wi ) and inserting arcs(vi ,n)
and (n, wi ). Because the inserted arcs(vi ,n) and (n, wi ) are disjoint for all 1≤ i ≤
n − 2, and the removed arcs(vi , wi ) are also disjoint from the inserted B(n − 1)C code,
so that the code formed by Step 5b is a BnC code. In Step 4, the worst case of finding a
successful combination needs (n−1)! iterations, so the complexity for finding a BnC code is
O((n − 1)!). However, the heuristic algorithm may fail to find a BnC code from some
B(n− 1)C code. In this case, we can generate another B(n− 1)C code as a seed to repeat
the same procedure, and then the BnC code may be found. We have developed a program
that uses the above B5C code as a seed to find other BnC codes. Our experiments showed
that our heuristic approach can find a BnC code much faster than the exhausting search.
Table 3 shows the time needed for searching a BnC code by comparing the exhausting
search with theFind-BnC-codealgorithm running on an Intel Pentium-90 machine with
32MB RAM. Our simulation also shows that the exhausting search method indeed takes
much time for a largen. The Appendix A.2 lists some BnC codes fromn = 2 to n = 12
(limited by the space), generated by theFind-BnC-codealgorithm.



292 SHYU AND SHIEH

Table 3. Results of the comparison.

The exhausting search The Find-BnC-Code algorithm

B6C ∼=4.5 h ≤0.1 s

B7C ∼=17.2 h ≤0.1 s

B8C — ≤0.1 s

B10C — ≤0.1 s

B20C — ∼=0.1 s

B30C — ∼=0.1 s

B50C — ∼=0.1 s

B60C — ∼=0.1 s

— Indicates more than one day.

A.2. BnC code lists

B2C: {1, 2}.
B3C: {1, 2, 3, 1, 3, 2}.
B4C: {1, 3, 2, 4, 1, 2, 3, 4, 3, 1, 4, 2}.
B5C: {1, 2, 3, 4, 5, 2, 4, 1, 3, 5, 3, 1, 4, 2, 5, 4, 3, 2, 1, 5}.
B6C: {1, 2, 3, 6, 4, 5, 2, 4, 1, 6, 3, 5, 3, 1, 4, 6, 2, 5, 4, 3, 2, 1, 5, 6, 1, 3, 4, 2, 6, 5}.
B7C: {1, 7, 2, 3, 6, 4, 5, 2, 4, 7, 1, 6, 3, 5, 3, 1, 4, 6, 2, 7, 5, 4, 3, 2, 1, 5, 7, 6, 1, 3, 7, 4, 2,

6, 5, 1, 2, 5, 6, 7, 3, 4}.
B8C: {1, 8, 7, 2, 3, 6, 4, 5, 2, 8, 4, 7, 1, 6, 3, 5, 3, 1, 4, 8, 6, 2, 7, 5, 4, 3, 8, 2, 1, 5, 7, 6, 1,

3, 7, 4, 2, 6, 5, 8, 1, 2, 5, 6, 7, 8, 3, 4, 1, 7, 3, 2, 4, 6, 8, 5}.
B9C: {1, 9, 8, 7, 2, 3, 6, 4, 5, 2, 8, 4, 7, 1, 6, 3, 9, 5, 3, 1, 4, 8, 6, 2, 9, 7, 5, 4, 3, 8, 2, 1, 5,

7, 6, 9, 1, 3, 7, 4, 9, 2, 6, 5, 8, 1, 2, 5, 9, 6, 7, 8, 3, 4, 1, 7, 9, 3, 2, 4, 6, 8, 5, 1, 8, 9,
4, 2, 7, 3, 5, 6}.

B10C: {1, 10, 9, 8, 7, 2, 3, 6, 4, 5, 2, 10, 8, 4, 7, 1, 6, 3, 9, 5, 3, 10, 1, 4, 8, 6, 2, 9, 7, 5, 4,
10, 3, 8, 2, 1, 5, 7, 6, 9, 1, 3, 7, 10, 4, 9, 2, 6, 5, 8, 1, 2, 5, 9, 6, 10, 7, 8, 3, 4, 1, 7,
9, 3, 2, 4, 6, 8, 10, 5, 1, 8, 9, 4, 2, 7, 3, 5, 10, 6, 7, 4, 3, 1, 9, 10, 2, 8, 5, 6}.

B11C: {1, 11, 10, 9, 8, 7, 2, 3, 6, 4, 5, 2, 10, 8, 4, 7, 1, 6, 3, 11, 9, 5, 3, 10, 1, 4, 11, 8, 6,
2, 9, 7, 5, 4, 10, 3, 8, 2, 11, 1, 5, 7, 6, 9, 1, 3, 7, 10, 4, 9, 11, 2, 6, 5, 8, 1, 2, 5, 9, 6,
10, 7, 8, 11, 3, 4, 1, 7, 9, 3, 2, 4, 6, 8, 10, 11, 5, 1, 8, 9, 4, 2, 7, 3, 5, 10, 6, 11, 7, 4,
3, 1, 9, 10, 2, 8, 5, 11, 6, 7, 11, 4, 8, 3, 9, 2, 1, 10, 5, 6}.

B12C: {1, 11, 10, 9, 8, 7, 2, 12, 3, 6, 4, 5, 2, 10, 8, 4, 7, 1, 12, 6, 3, 11, 9, 5, 3, 12, 10, 1, 4,
11, 8, 6, 2, 9, 7, 5, 4, 10, 3, 8, 2, 11, 1, 5, 12, 7, 6, 9, 1, 3, 7, 10, 4, 9, 12, 11, 2, 6,
5, 8, 1, 2, 5, 9, 6, 10, 7, 8, 11, 3, 4, 12, 1, 7, 9, 3, 2, 4, 6, 12, 8, 10, 11, 5, 1, 8, 12,
9, 4, 2, 7, 3, 5, 10, 6, 11, 7, 12, 4, 3, 1, 9, 10, 2, 8, 5, 11, 6, 7, 11, 4, 8, 3, 9, 2, 1,
10, 12, 5, 6, 8, 9, 11, 12, 2, 3, 10, 5, 7, 4, 1, 6}.

Acknowledgment

This research was partially sponsored by the National Science Council, Taiwan, R.O.C.
under contract number: NSC87-2213-E-009-054.



PLAYBACK DISPATCH AND FAULT RECOVERY 293

References

1. F. Cristian, “Understanding fault-tolerant distributed systems,” Communications of the ACM, Vol. 34,
pp. 56–78, 1991.

2. A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching policies for an video-on-demand server,” ACM
Multimedia Systems, Vol. 4, No. 3, pp. 112–121, 1996.

3. C. Federighi and L.A. Rowe, “A distributed hierarchical storage manager for a video-on-demand system,” in
Proceedings of IS&T/SPIE, San Jose, CA, 1994.

4. E.A. Fox, “The coming revolution of interactive digital video,” Communications of the ACM, Vol. 32,
pp. 794–801, 1989.

5. B. Furht, “Multimedia systems: An overview,” IEEE Multimedia, pp. 47–59, Spring, 1994.
6. D.J. Gemmell, “Multimedia storage servers: A tutorial,” IEEE Multimedia, pp. 40–49, Summer 1995.
7. E. Gelenbe, D. Finkel, and S. Tripathi, “Availability of a distributed computer system with failures,” Acta

Informatica, Vol. 23, pp. 643–655, 1986.
8. L. Golubchik, C.S. Lui, and R. Muntz, “Adaptive piggybacking: A novel technique for data sharing in video-

on-demand storage servers,” ACM Multimedia Systems, Vol. 4, No. 3, pp. 140–155, 1996.
9. Y. Huang and S.K. Tripathi, “Resource allocation for primary-site fault-tolerant systems,” IEEE Transactions

on Software Engineering, Vol. 19, No. 2, 1993.
10. J.C. Laprie, J. Arlat, and C. Beounes, “Definition and analysis of hardware- and software-fault-tolerant

architectures,” IEEE Computer, Vol. 23, pp. 39–51, 1990.
11. T.D.C. Little and D. Venkatesh, “Probabilistic assignment of movies to storage devices in a video-on-demnad

system,” in Proc. 4th Int’l. Wksp. On Network and Op. Sys. Support for Digital Audio and Video, 1992, pp.
231–240.

12. T.D.C. Little and D. Venkatesh, “Popularity-based assignment of movies to storage devices in a video-on-
demand system,” Multimedia Systems, Vol. 2, No. 6, pp. 280–287, 1995.

13. V.P. Nelson, “Fault-tolerant computing: Fundamental concepts,” IEEE Computer, Vol. 23, pp. 19–25,
1990.

14. I.J. Shyu and S.P. Shieh, “The load-balanced playback dispatch for fault-tolerant multi- server VOD sys-
tems,” in Proceedings of the Third Workshop on Real-Time and Media Systems, Taipei, Taiwan, R.O.C.
1997.

15. Y. Wang, C.L. Liu, H.C. Du, and J. Hsieh, “Efficient video file allocation schemes for video-on-demand
services,” ACM Multimedia Systems, Vol. 5, 1997.

16. T.H. Wu, “Distributed interactive video system design and analysis” IEEE Communications Magazine, Vol. 35,
No. 3, 1998.

17. G.K. Zipf, Human Behavior and the Principles of Least Effort, Addison-Wesley: Reading, MA,
1949.

Ing-Jye Shyureceived his B.S. degree in computer science and information engineering from the National Chiao-
Tung University, Taiwan, in 1992. He is currently a Ph.D. candidate at the same university. His research interests
include video-on-demand systems, distributed communication protocols, and real-time operating systems.



294 SHYU AND SHIEH

Shiuh-Pyng Shiehreceived the M.S. and Ph.D. degrees in electrical engineering from the University of Maryland,
College Park, in 1986 and 1991, respectively. He is currently an Associate Professor with the Department of Com-
puter Science and Information Engineering, National Chiao-Tung University. From 1988 to 1991 he participated
in the design and implementation of the B2 Secure XENIX for IBM, Federal Sector Division, Gaithersburg,
Maryland, USA. He is also the designer of SNP (Secure Network Protocol). Since 1994 he has been a consul-
tant for Computer and Communications Laboratory, Industrial Technology Research Institute, Taiwan in the area
of network security and distribute operating systems. He is also a consultant for the National Security Bureau,
Taiwan. Dr. Shieh was on the organizing committees of a number of conferences, such as International Computer
Symposium, and International Conference on Parallel and Distributed Systems. Recently, he is the program chair
of 1997 Information Security Conference (INFOSEC’97). His research interests include distributed operating
systems, and computer security.


