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A perfect secret sharing scheme allows a secret K to be shared among a set of partici-
pants in such a way that only qualified subsets of participants can recover the secret, and
unqualified subsets of participants obtain no information regarding the secret.  In this paper,
we propose a construction of perfect secret sharing schemes with uniform, generalized ac-
cess structures of rank 3.  Compared with other constructions, our construction has some
improved lower bounds on the information rate.  In addition, we also generalize the con-
struction to perfect secret sharing schemes with uniform, generalized access structures of
constant rank.
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1.  INTRODUCTION

In a secret sharing scheme, a secret is broken into pieces, called shares, where each
participant keeps a share.  A secret sharing scheme allows the secret K to be shared among
a set of participants P in such a way that only qualified subsets of participants can collabo-
rate with their secret shares to recover the secret [1-4].  A special case of secret sharing
schemes is the threshold scheme [5, 6], in which all groups of participants of at least some
fixed size are qualified.  Secret sharing schemes have many applications in different areas,
such as access control, launching a missile, and opening a bank vault or a deposit box.  For
a more detailed description of secret sharing schemes and a wide discussion of their
applications, we refer the reader to the excellent survey papers [3, 7].  A current and com-
plete bibliography can also be found online [4].  The secret K is chosen by a special
participant, called the dealer, who is responsible for computing and distributing the shares.
The collection of subsets of participants that can reconstruct the secret in this way is called
access structure G.  G is usually monotone, that is, if X Œ G and X Õ X¢  Õ P, then X¢  Œ G.  A
minimal qualified subset Y Œ G is a subset of participants such that Y¢  œ G for all Y¢  Ã Y,
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Y¢  π Y.  The basis of G, denoted by G0, is the family of all minimal qualified subsets.  Let 2P

denote the collection of all subsets of P.  For any G0 Õ 2P, the closure of G0 is defined as cl
(G0) = {X¢  : $ X Œ G0, X  Õ X¢  Õ P}.  Therefore, an access structure G is the same as the
closure of its basis G0, cl(G0).  A secret sharing scheme is perfect if unqualified subsets of
participants obtain no information regarding the secret [8, 9].  This means that the prior
probability p(K = K0) is equal to the conditional probability p(K = K0 | given any or fewer
secret shares of an unqualified set).  With the entropy function H [10], we can state the
requirements of a secret sharing scheme as follows:

(1) any qualified subset can reconstruct the secret:

"XŒG H(K | X ) = 0; and

(2) any unqualified subset has no information on the secret:

"XœG H(K | X ) = H(K).

To efficiently implement a perfect secret sharing scheme, it is important to keep the
length of the shares as small as possible.  Let K be the secret space and S be the maximum
share space.  The information rate of a secret sharing scheme is defined as the ratio of the
length of the secret to the maximum length of shares, that is, r = log2 |K| / log2 |S| [2].  There
are other, different approaches to measuring the efficiency of a secret sharing scheme, such
as the average information rate [11] and the dealer�s randomness approaches [12, 13].  The
average information rate of a secret sharing scheme is the ratio between the length of the
secret and the arithmetic mean of the length of all shares [11].  The dealer�s randomness is
the number of random bits required by the dealer to set up a secret sharing scheme [12, 13].
In this paper, we will only focus on the information rates of perfect secret sharing schemes.

Given any access structure G, Ito et al. [1, 14] showed that there exists a perfect secret
sharing scheme to realize the structure.  Benaloh and Leichter [15] proposed a different
algorithm to realize secret sharing schemes for any given monotone access structure.  In
both constructions, the information rate decreases exponentially as a function of n, the
number of participants.  Since then, many researchers have studied the perfect secret shar-
ing scheme for graph-based access structure G with basis G0, where G0 is the collection of
pairs of participants corresponding to edges [8, 9, 16-18].  Stinson [18] proved that, for any
graph G with n vertices having maximum degree d, there exists a perfect secret sharing
scheme for the access structure based on G in which the information rate is at least 2 / (d +
1).  Dijk [9] showed that Stinson�s lower bound is tight because he proved that there exist
graphs having maximum degree d such that the optimal information rate is at most 2 / (d +
1 - e) for all d ≥ 3 and e > 0.

The rank of an access structure G is the maximum cardinality of a minimal qualified
subset.  An access structure is uniform if every minimal qualified subset has the same
cardinality.  Therefore, a graph-based access structure is a uniform access structure with
rank 2.  Perfect secret sharing schemes with access structures of rank three were studied by
Stinson [17].  He applied Steiner systems to construct perfect secret sharing schemes with
access structures of rank three.  The constructed secret sharing scheme has the information

rate ρ ≥ − −
6

1 2( )( )n n  if G is uniform and n ∫ 2, 4 (mod 6), where n is the number of
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participants.  Note that if n doesn�t satisfy the condition n ∫ 2, 4 (mod 6), it is necessary to
find an n¢  > n such that n¢  ∫ 2, 4 (mod 6).  In this paper, we propose a construction of
perfect secret sharing schemes with uniform access structures of rank three.  The lower

bound of the information rate of the proposed scheme is 
6
1 22( )

.
n − +   Compared with

Stinson�s construction, our construction has some improved lower bounds on the informa-
tion rate.  In addition, we also extend our idea which constructs perfect secret sharing
schemes with uniform access structures of rank three to construct perfect secret sharing
schemes with access structures of constant rank m.

This paper is organized as follows.  In section 2, we first introduce the construction of
secret sharing schemes for graph-based access structures.  Section 3 gives the construction
of perfect secret sharing schemes with uniform access structures of rank 3 and evaluates the
information rate of the constructed scheme.  In section 4, we propose an efficient decompo-
sition construction of secret sharing schemes with uniform access structures of rank m.
Finally, we conclude this paper in section 5.

2. CONSTRUCTION FOR GRAPH-BASED ACCESS STRUCTURES

A uniform access structure of rank m is the access structure in which the size of each
element in G0 is equal to m.  Therefore, the graph-based access structure can be considered
to be the case of rank 2.  In this section, we first introduce the construction of secret sharing
schemes for graph-based access structures [18].  An access structure based on a graph
consists of the closure of a graph, where a vertex denotes a participant and an edge denotes
a minimal qualified pair of participants.  Suppose G is a graph with vertices V(G),
edges E(G), and maximum degree d.  Stinson [18] showed that there exists a perfect secret
sharing scheme with information rate r = 2 / (d + 1).  In the following, we will propose a
construction for graph-based access structures.

We assume that P = {p1, p2, ..., pn} is the set of participants corresponding to the
vertices of graph G, and that the secret K = (K1, K2) is taken randomly from GF(q2), where
q is a prime and q ≥ n.  Let  f(x) = K2x + K1(mod q).  yi is computed from  f(x) as follows:

yi = f(i - 1)(mod q), for i = 1, ..., n.

It is clear that given yi and yj, for i π j, f(x) can be determined uniquely.  Therefore, if
one can get two or more yi�s, he can recover the secret K.  However, if one has no knowl-
edge of any yi, he can obtains no information about the secret.  Note that if one can get one
yi, he can obtain some information about the secret.

The dealer selects n random numbers, r1, ..., rn, over GF(q).  The share of participant
pi is given by

Si = <ai,1, ..., ai,t, ..., ai,n>,

where 1 £ t £ n,

ai,t = ri (mod q) if t = i,

ai,t = rt + yt(mod q) if p pi t is an edge of G, and
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ai,t is empty if t π i and p pi t is not an edge of G.

Theorem 1:  The constructed secret sharing scheme satisfies the dollowing conditions:

(1)  any qualified subset can reconstruct the secret:

"XŒG H(K | X ) = 0; and

(2)  any unqualified subset has no information about the secret:

"XœG H(K | X ) = H(K).

Proof:
(1)  Let X be a subset of participants, and let X Œ G.  Then, there exists pi, pj Œ X (i π j) such

that p pi j is an edge of G.  Therefore, participant pi owns ai,i = ri and ai,j = rj + yj, and
participant pj owns aj,j = rj and aj,i = ri + yi.  Thus, participant pi and participant pj can
recover yi and yj, and can then recover f(x) and secret K.

(2)  Let X be a subset of participants, and let X œ G.  Therefore, for any pair of participants
pi, pj Œ X(i π j), p pi j is not an edge of G.  We assume that X can recover yi.  Therefore
there exists participant pi who owns ai,i = ri and participant pj who owns aj,i = ri + yi.

Thus, p pi j is an edge of G.  This is a contradiction of the condition that p pi j is not an

edge of G.   Hence, X cannot recover any yi.  That is, X obtains no information about
secret K. o

The share of participant pi is an n-dimensional vector.  Except that ai,j�s (for all j,
p pi j œ E(G)) are empty, every ai,j is over GF(q).  Therefore, the length of share Si is
log(qdi+1), where di is the degree of vertex pi of G.  The maximal length of the shares is
log(qd+1), where d is the maximum degree of G.  The length of the secret is log(q2).  Thus,

the information rate of the secret sharing scheme is r = 
2

1
2

1
⋅

+ ⋅ = +
log

( ) log .
q

d q d

Time Complexity: Here, we evaluate the time complexity for constructing the secret shar-
ing scheme based on a graph G.  It is clear that the computation of yi�s, for i = 1, ..., n, can
be achieved in O(n) time complexity.  The dominant part is the assignment of the shares,
Si�s.  For these shares, Si�s, there are n2 entries in total.  Therefore, the construction can be
achieved in O(n2) time complexity.

3.  CONSTRUCTION FOR UNIFORM ACCESS
STRUCTURES OF RANK THREE

In the section, we will propose the construction of perfect secret sharing schemes
with uniform access structures of rank 3 and evaluate the information rate of the constructed
scheme. Assume that P = {p1, p2, ..., pn} is the set of participants, and that the secret K = (K1,
K2, K3, K4, K5, K6) is taken randomly from GF(q6), where q is a prime and q ≥ 2n.  Let f(x) =
K6x5 + K5x4 + K4x3 + K3x2 + K2x + K1(mod q).  yi be computed from f(x) as follows:
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yi = f(i - 1) (mod q), for i = 1, ..., 2n.

Thus, if he can get six or more yi�s, he can recover f(x) and then secret K.  However,
if he has no knowledge of any yi, he can obtain no information about the secret.

We define Gi, for 1 £ i £ n, as the graph with vertices V(Gi) and edges E(Gi),
where V(Gi) = {pj | for all pj, where {pi, pj, pk} Œ G0} and E(Gi) = { p pj k  | for all p pj k , where
{pi, pj, pk} Œ G0}.  The dealer selects 2n random numbers, r1, ..., r2n, over GF(q).  As in the
construction presented in section 2, there exists a secret sharing scheme realizing Gi in
which the secret is (r1 + yi, rn+i + yn+i) and the share of participant pj is Sj(Gi) for pj Œ V(Gi).

The share of participant pi is given by

Si = < ri, rn+i, ai,1, ..., ai,t, ..., ai,n  >,

   where 1 £ t £ n,

ai,t = Si(Gt)  if pi Œ V(Gt) and

ai,t is empty       otherwise.

Theorem 2:  The constructed secret sharing scheme satisfies the following conditions:
(1) any qualified subset can reconstruct the secret:

"XŒG H(K | X ) = 0; and

(2) any unqualified subset has no information about the secret:

"XœG H(K | X ) = H(K).

Proof:
(1)  Let X Œ G be a subset of participants.  Then, there exists pi, pj, pk Œ X (i π j π k) such that

{pi, pj, pk} Œ G0.  Participant pi owns ri, rn+i, Si(Gj), and Si(Gk).  Participant pj owns rj,
rn+j, Sj(Gi), and Sj(Gk).  Participant pk owns rk, rn+k, Sk(Gi), and Sk(Gj).  From Sj(Gi) and
Sk(Gi), they can recover ri + yi, rn+i + yn+i because p pj k is an edge of Gi.  From Si(Gj) and

Sk(Gj), they can recover rj + yj, rn+j + yn+j because p pi k is an edge of Gj.  From Si(Gk)

and Sj(Gk), they can recover rk + yk, rn+k + yn+k because p pi j is an edge of Gk.  Thus,

participants pi, pj and pk can recover yi, yn+i, yj, yn+j, yk and yn+k, and can then recover f(x)
and secret K.

(2)  Let X œ G be a subset of participants.  Therefore, there does not exist any three partici-
pants pi, pj and pk in X such that {pi, pj, pk} Œ G0.  We assume that X can recover yi.
Hence, there exists participant pi who owns ri, and participants pj and pk who can re-
cover ri + yi.  Thus, p pj k is an edge of Gi and {pi, pj, pk} Œ G0.  This is a contradiction of
the condition that {pi, pj, pk} œ G0.  That is, X obtains no information about yi, for 1 £ i
£ 2n, and, therefore, about secret K. o
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The share of participant pi is Si = < ri, rn+i, ai,1, ..., ai,t, ..., ai,n >.  Because ai,t = Si(Gt) for
pi Œ V(Gt), the length of ai,t is equal to log(pdi(Gt)+1) if pi Œ V(Gt), where di (Gt) is the degree

of vertex pi in Gt.  Hence, the length of share Si is equal to log( ).
( ( ) )

:
q

d Gi t
t pi Gt

+ +∑
∈

1 2

  Because the
length of the secret is equal to log(q6), the information rate of the secret sharing scheme is

ρ = ⋅
+ + ⋅∑

= + +∑

∈

∈

6
1 2

6
1 2

log
{ ( ( ) ) } log

{ ( ( ) )}
.

:

:

q
Max d G q

Max d G

i
i t

t p G

t
i t

t p G

i t

i t

  

In the worst case when pi Œ Gt (for 1 £ t £ n and t π i) and di(Gt) = n - 2, the

information rate of the secret sharing scheme is ρ =
− +

6
1 22( )

.
n

Compared with the lower bound studied by Stinson [17], our lower bound is better
than Stinson�s lower bound in some cases.  The comparison can be seen in Table 1.

We demonstrate the use of our method in the following example.
Let P = {p1, p2, p3, p4, p5} and G0 ={ {p1, p2, p3}, {p1, p2, p5}, {p1, p3, p4}, {p2, p4, p5},

{p3, p4, p5} }.  We construct

G1 with V(G1) = {p2, p3, p4, p5} and E(G1) = { p p p p p p2 3 2 5 3 4,  ,  },

G2 with V(G2) = {p1, p3, p4, p5} and E(G2) = { p p p p p p1 3 1 5 4 5,  ,  },

G3 with V(G3) = {p1, p2, p4, p5} and E(G3) = { p p p p p p1 2 1 4 4 5,  ,  },

G4 with V(G4) = {p1, p2, p3, p5} and E(G4) = { p p p p p p1 3 2 5 3 5,  ,  }, and

G5 with V(G5) = {p1, p2, p3, p4} and E(G5) = { p p p p p p1 2 2 4 3 4,  ,  } as follows.

Table 1.  Bounds on the information rate for uniform access structures of rank three
on n participants for n ≥≥≥≥≥ 5, where * denotes the method which has the better bound.

n Stinson�s Method Our Method

n ∫ (mod 6)

n ∫ 1,3 (mod 6)

n ∫ 2,4 (mod 6)

n ∫ 5 (mod 6)

ρ ≥ +
6

1n n( )

ρ ≥ −
6

1n n( )

ρ ≥ − −
6

1 2( )( ) *n n

ρ ≥ + +
6

1 2( )( )n n

ρ ≥
− +

6
1 22( )

*
n

ρ ≥
− +

6
1 22( )

*
n

ρ ≥
− +

6
1 22( )

*
n

ρ ≥
− +

6
1 22( )n
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Graph G1-G5
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Let the secret K = (K1, K2, K3, K4, K5, K6) be taken randomly from GF(q6), where q is
a prime and q ≥ 10.

Let f(x) = K6x5 + K5x4 + K4x3 + K3x2 + K2x + K1 (mod q) and yi = f (i -1) (mod q), for i
= 1, ..., 10.  The dealer selects 10 random numbers ri�s (1 £ i £ 10) from GF(q).  Each pair
of (ri + yi, rn+i + yn+i) is shared by the secret sharing scheme with access structure Gi, and
the share of participant pj is Sj(Gi) for pj Œ V(Gi).

The share of participant pi is given by

S1 = < r1, r6, -, S1(G2), S1(G3), S1(G4), S1(G5) >,
S2 = < r2, r7, S2(G1), -, S2(G3), S2(G4), S2(G5) >,
S3 = < r3, r8, S3(G1), S3(G2), -, S3(G4), S3(G5) >,
S4 = < r4, r9, S4(G1), S4(G2), S4(G3), -, S4(G5) >,
S5 = < r5, r10, S5(G1), S5(G2), S5(G3), S5(G4), - >.

Obviously, {p1, p2, p5} can recover y1, y2, y5, y6, y7, and y10, and can then recover K.
The lengths of Si(Gj)�s can be tabulated as follows.

Therefore, the length of each share Si is equal to log(q12), and the information rate of

the secret sharing scheme is ρ = ⋅
⋅ =6

12
1
2

log
log .

q
q

Time Complexity:  Here, we evaluate the time complexity for constructing a secret sharing
scheme with a uniform access structure of rank three.  First, it is clear that the computation
of yi�s, for i = 1, ..., n, can be achieved in O(n) time complexity.  On the other hand, to
construct a secret sharing scheme with a uniform access structure of rank three on n

j=2 j=3 j=4 j=5

i=1 � log(q3) log(q3) log(q2) log(q2)
i=2 log(q3) � log(q2) log(q2) log(q3)
i=3 log(q3) log(q2) � log(q3) log(q2)
i=4 log(q2) log(q2) log(q3) � log(q3)
i=5 log(q2) log(q3) log(q2) log(q3) �

participants, we need to construct n secret sharing schemes for n graphs (each n -1 vertices).
From section 2, we know that the time complexity for constructing a secret sharing scheme
for a graph with n -1 vertices is O((n -1)2).  Because the complexity O(n(n -1)2) is equiva-
lent to the complexity O(n3), the construction of a secret sharing scheme with a uniform
access structure of rank three can be achieved in O(n3) time complexity.

4. CONSTRUCTION FOR UNIFORM ACCESS
STRUCTURES OF RANK m

In this section, based on the same concept used in the construction of the secret shar-
ing schemes with uniform access structures of rank 3, we propose an efficient decomposi-
tion construction of secret sharing schemes with uniform access structures of rank m.  Let G
be a uniform access structure of rank m on n participants.  Assume that P = {p1, p2, ..., pn}
is the set of participants, and that the basis of G is G0.  We can decompose G0 into the union
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of Gi�s, for 1 £ i £ n, where Gi = {X : X Œ G0 and X contains participant pi}.  Thus, G = cl(G0)
= cl(G1) »...» cl(Gn).  We define Gi* = {X : X » {pi} Œ Gi}.  Therefore, each cl(Gi*) is a
uniform access structure of rank m - 1.  We assume that secret K = (K1, K2, ..., Km), where
each Ki, for 1 £ i £ m, is taken randomly from GF(qh(m-1)), which is the secret space of the
secret sharing schemes with uniform access structures of rank m - 1.  Note that h(i) is a
function which indicates that the secret space of the secret sharing schemes with uniform
access structures of rank i is GF(qh(i)).  The dealer selects a polynomial f(x) of degree m◊h(m
- 1) -1 with coefficients K and computes yi as follows: yi = f(i - 1)(mod q), for i = 1, ..., n◊h
(m - 1).

Thus, if one can get m◊h(m - 1) or more yi�s, he can recover f(x) and then secret K.
However, if one has no knowledge of any yi, he can obtain no information about the secret.
We use Y1, Y2, ..., Yn over GF(qh(m-1)) to denote these n◊h(m - 1) yi�s.  The dealer selects n
random numbers R1, R2, ..., Rn over GF(qh(m-1)).  We assume that there exists a secret sharing
scheme realizing cl(Gi*), in which the secret is Ri + Yi and the share of participant pj is Sj

(Gi*).
The share of participant pi is given by

Si = < Ri, Si(G1*), ..., Si(Gi-1*), Si(Gi+1*), ..., Si(Gn*) >.

Thus, the constructed secret sharing scheme is a perfect secret sharing scheme with access
structure G.  Summarizing, we have the following theorem.

Theorem 3:  The constructed secret sharing scheme satisfies the following conditions:
(1) any qualified subset can reconstruct the secret:

"XŒG H(K | X ) = 0; and

(2) any unqualified subset has no information on the secret:

"XœG H(K | X ) = H(K).

Time Complexity: Here, we will evaluate the time complexity for constructing a secret
sharing scheme with a uniform access structure of rank m.  First, it is clear that we can use
a polynomial of degree m! - 1 to compute all yi�s, for i = 1, ..., n.  Thus, the computation of
yi�s can be achieved in O(n◊m!), which is smaller than the time complexity of the following
part.  On the other hand, to construct a secret sharing scheme with an access structure of
rank m on n participants, we need to construct n secret sharing schemes with access struc-
tures of rank m - 1 on n - 1 participants.  Let O(T(m, n)) be the time complexity for
constructing a secret sharing scheme with an access structure of rank m on n participants.
Then, O(T(m, n)) = O(m◊T(m - 1, n - 1)).  Thus, O(T(m, n)) = O(m◊◊◊3◊T(2, n - m + 2)).

Because O(T(2, n - m + 2)) = O((n - m + 2)2), it is clear that O(T(m, n)) = O m n m( ! ( ) ).2 2 2⋅ − +

5.  CONCLUSIONS

Based on the secret sharing schemes with graph-based access structures, we have
proposed an efficient construction to realize the perfect secret sharing schemes with uni-
form access structures of rank 3.  Given any uniform access structure of rank 3, with basis
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G0, the information rate of the constructed secret sharing scheme is equal to

6
1 2Max d G

i
i t

t p Gi t

{ ( ( ) )} ,
:

+ +∑
∈

 where Gi is the graph with vertices V(Gi) = {pj | for all pj, where
 
{pi,

pj, pk} Œ G0} and edges E(Gi) = { p pj k | for all p pj k , where {pi, pj, pk} Œ G0}.  In the worst

case, the lower bound  
6
1 22( )n − +  can be achieved, where n is the number of participants.

Compared with Stinson�s construction, our construction has some improved lower bounds
on the information rate.  In addition, we have also proposed a construction of perfect secret
sharing schemes for uniform access structures of rank m.
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