
I N F O R M A T I O N
SCIENCES

~N ~ O N A L J ~ A L

ELSEVIER Information Sciences 113 (1999) 131-146

Auditing user queries in dynamic statistical
databases

Shiuh-Pyng Shieh *, Chern-Tang Lin
Department of Computer Science and Information Engineering, National Chiao Tung University,

Hsinehu 30010. Taiwan

Received 1 March 1997; received in revised form 21 December 1997; accepted 12 April 1998

Communicated by Ben Wah

Abstract

Chin proposed an audit scheme for inference control in statistical databases (SDBs)
which can determine whether or not a query will lead to the compromise of an SDB. As
Chin points out that the dynamic updates of an SDB are prohibited in this scheme be-
cause, otherwise, the time and storage requirements will become infinite. The restriction
limits the use of this scheme since many SDBs need to be dynamically updated. In this
paper, we propose an algorithm to remove this restriction so that updates can be al-
lowed. We also propose an efficient audit scheme for dynamic SDBs which requires less
time and storage requirements, and does not have the space explosion problem that ap-
pears in Chin's scheme. © 1999 Elsevier Science Inc. All rights reserved.

Keywords." Statistical database; Inference control; Security

1. Introduction

A stat is t ical d a t a b a s e (SDB) is a da t abase tha t conta ins sensitive records de-
scribing indiv iduals but only stat is t ical i n fo rma t ion is avai lable . SDBs are
main ly used for s ta t is t ical analysis where only stat is t ical queries, such as
S U M , A V E R A G E , C O U N T are avai lab le and in fo rma t ion o f indiv iduals can-
not be disclosed. SDBs are used in m a n y appl ica t ions , such as census data ,

* Corresponding author. Tel.: 886 3573 1876; fax: 886 3572 4176; e-mail: ssp@csie.nctu.edu.tw

0020-0255/99/$19.00 © 1999 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 0 - 0 2 5 5 (9 8) 1 0 0 4 4 - 0

132 S.-P. Shieh, C.-T. Lin / Infbrmation Sciences 113 (1999) 131.146

mortality data, and economic planning. A typical example of SDB is illustrated
in Fig. 1. In the SDB, the scores of individuals should not be disclosed, and
therefore A V E R A G E (I D = 1, Score), the average score of students with
ID 1, is an illegal query. But statistical queries, such as COUNT(ALL) and
AVERAGE(Address = "New York", Score) are legal. Although users are only
allowed to access the statistical information from an SDB, they can infer the
confidential individual information by invoking a series of legal queries. When
any confidential information is disclosed, the SDB is compromised. For exam-
ple, both AVERAGE(Addres s="New York", Score) and AVERAGE
(Dept. = "C.S.", Score) are legal queries. A user can infer the confidential in-
formation (the score of ID 3) by computing the difference between these two
queries. If both queries are answered, the SDB will be compromised. Therefore,
the SDB should deny one of the two queries to protect the individual informa-
tion.

In practice, many SDBs are dynamic. That is, the individual records of an
SDB need to be inserted, deleted and updated dynamically to keep statistical
information fresh. A user may infer confidential information from the updates
of a dynamic SDB. For example, when invoking the query AVERAGE(Gender
= "M", Score) before and after inserting a new record with gender " M " into
the SDB shown in Fig. 1, the invoker can infer the new record's score from the
change of the answers. Therefore, not only the old and the new values of an
individual, but also the change of an SDB should be protected.

There are many inference control methods proposed to protect various da-
tabase systems, such as multilevel security database [1-3]. Those methods for
SDBs can be classified into three classes: conception, perturbation, and query re-
striction. The conceptual model provides a framework for investigating the se-
curity problem at the conceptual-data-model level [4]. A popular approach for
the conceptual model is the lattice model [5,6]. This model presents a frame-
work for better understanding and investigating the security problem of SDBs,
but gives too many constraints for users. Perturbation approaches [7-13] intro-
duce noise in the data, or perturb the answer to user queries while leaving the
data in the SDB unchanged. These approaches cannot provide precise answers
to users. Query restriction methods impose extra restriction on queries which
includes restricting the query set size [14], controlling the overlap among suc-

ID Gend~l-
1 F
2 M
3 M
4 F

Address Dept . Score

New York C.S. 82
Washington M.E. 75
Washington C.S. 71
New York C.S. 83

Fig. 1. A statistical database.

S.-P. Shieh, C.-T. Lin / Information Sciences 113 (1999) 131-146 133

cessive queries [15], auditing [16], partitioning [17,18] and suppressing cells [19].
Some of them cannot guarantee high security assurance, while others limit the
usefulness of the SDBs.

Chin et al. proposed an inference control scheme, Audit Expert [16], which
uses the query restriction approach. Audit Expert maintains a matrix to audit
the history of user's queries and check if a new query will lead to the compro-
mise of an SDB. Audit Expert can provide high assurance of security of SDBs,
and need not impose extra restriction on user queries. Chin points out that Au-
dit Expert is only applicable to static SDBs. In a dynamic SDB where individ-
ual data is dynamically updated, the audit matrix will be full of garbage
columns and rows and its size may become infinite. Consequently, the time
and storage requirements for the analysis of the audit matrix are quite high.
Audit Expert suffers from the time and storage space explosion problem and
thus is not applicable to dynamic SDBs. Since many SDBs are dynamic, this
restriction limits the use of Audit Expert. In this paper, we investigate how
to remove the restriction on the use of Chin's Audit Expert, and then propose
an efficient audit scheme which requires less storage and time for the statistical
analysis. This new audit scheme not only provides high security assurance and im-
poses no extra restriction on user queries, but also is applicable to dynamic SDBs.

This paper is organized as follows. In next section, Chin's scheme is intro-
duced and a new method for reducing ils time and space requirements is pro-
posed. With the proposed method, Chin's scheme can be extended so that it
can be used in dynamic SDBs. In Section 3, we propose a new audit scheme
which can protect dynamic SDBs in a more efficient way. Section 4 discusses
the updates of a dynamic SDB in our scheme. In Sections 5 and 6, we analyze
the complexity of the proposed scheme, and give the conclusions.

2. Chin's scheme and the enhancement

In Chin's scheme, the SDB consists of n individuals xi, 1 <~ i <~ n. For nota-
tional simplicity, each individual xi is assumed to have a single protected nu-
merical attribute value, and each answered query reveals a set of individual
records {x i , x j , x k , . . . } . Hence, each answered query can be represented by a
vector (aj, a2, . . . ,an), where ai = 1, if x~ is accessed in this query. The user's
knowledge space K S is the vector space spanned by the set of vectors of an-
swered queries A Q. Formally, K S has the following properties.
1. I f ~ E AQ, then ~ E KS.
2. If ~ E KS, then b~ E KS; b is a real number.
3. If ~ , ~ 5 E KS, then ~ + ~ E KS.
4. Nothing else is in KS.
K S can be represented by a maximal set of nonredundant vectors of AQ. For
example in Fig. 1,

134 S.-P. Shieh, C.-T. Lin / Information Sciences 113 (1999) 131-146

q-i = (1,0,0, 1)
q--~ = (1,0, 1, 1)

We have

(SUM of the scores of the people living in NewYork),
(SUM of the scores of the people majoring in C.S.).

KS=

Cl C2 C3 C4

[,°°, 1 1 0 1 1 '

where ci represents the column associated with individuals xi. Notice that the
vectors in KS are linear independent. Therefore, the number of rows cannot ex-
ceed the number of columns in KS. The SDB is compromised if there exists a
vector of the form (0 , . . . ,0, 1 ,0 , . . . ,0) in KS. Unfortunately, Chin's scheme
suffers from space explosion problems if the SDB is dynamically updated. In
Chin's scheme, when an individual of an SDB is inserted, a new column corre-
sponding to this individual is inserted to KS. Since the new individual has not
yet been queried, all entries of the new column are zeros. On the other hand,
when an individual is deleted, the corresponding column, called the dangling
column, cannot be directly removed from the KS matrix for the protection of
individual information.

If we directly delete the dangling columns to reduce the size of KS, the de-
letion may cause both false alarms and security disclosure. A false alarm is
raised when a vector with a single " I " is found in the audit matrix but the cor-
responding individual is not disclosed. On the other hand, security disclosure
occurs when the audit matrix does not have any vector with a single 1, but
the secret of an individual is disclosed. For example in Fig. 2, the individual
x2 is deleted from SDB. If we remove the corresponding column c2 in KS,
the audit matrix will report that x4 is disclosed and the SDB is compromised.
(That is, according to the second row recorded in new KS, the vector (0, 0, 1, 0,
0, 0) contains a single 1 at the position of x4.) In fact, x4 is still undisclosed at
this time. Thus, a false alarm has been raised.

Another example illustrated for security disclosure is shown in Fig. 3. In this
example, the individual xl is deleted from the SDB. It seems reasonable to de-
lete the column cl. However, the deletion of the column will cause disclosure of
secret information. Assume that a new answered query, (0,1,0,1,1,1), is invoked
in KS after the deletion. The audit scheme will check KS and consider it as a

cl c2 c3 ¢4 e$ c6 c7 Cl c3 ¢4 c5 c6 c 7

KS = 1 0 1 0 0 SDB and thec2column KS = 0 1 0 0
0 1 1 1 0 is removed m 1 1 1 0

0 0 0 1 1 0 0 ! 1

Fig. 2. Deletion that causes a false alarm.

KS=

S.-P. Shieh, C.-T. Lin / Information Sciences 113 (1999) 131-146 135

c/ c2 cj c~ c5 c~ c7

f 0 0 t 1 0 1 0 0
0 1 0 1 0
0 0 0 1 I

xl is deleted from the SDB
and the corresponding col-
umn ci is removed from KS

KS=

c2 c3 c~ ~ ~ c7

f °
0 1 0 0
1 0 1 0
0 0 1 1

(0,1,0,1,1,1) is invoked
-" KS=

c2 c3 ~ CJ c~ c7

l'°"00] --- 0,00]
1 0 1 0
0 0 1 1

r/

Fig. 3. Delet ion tha t causes disclosure o f secret in format ion .

redundant answerable query, which is the same as rl. As a result, KS remains
unchanged and the query is answered. Thus, the secret information of the de-
leted Xl is disclosed.

The two examples above demonstrate that we cannot arbitrarily remove a
column in a KS when the corresponding individual is deleted from the SDB.
Therefore, the size of KS will only be expanded without any upper bound when
the individuals of a finite-size SDB are dynamically inserted, deleted or updat-
ed. It is possible to have a large KS for a small SDB. Substantial memory and
CPU time are wasted in handling these columns. It is not efficient to check the
entire KS matrix for every query, when the number of the rows and the col-
umns in KS is large. To cope with the problem, Chin imposes the restriction
on the scheme that it can only be used in static SDBs. The restriction limits
the use of the scheme. A method for the reduction of KS is desirable.

2.1. The enhancement

In this section, we propose an algorithm for the reduction of KS size. With
this algorithm, Chin's scheme can be enhanced so that it can be used in a dy-
namic SDB. As described above, in order to guarantee the security of an SDB,
all dangling columns cannot be arbitrarily deleted f rom the KS. However, it is
possible to delete part of the dangling columns if the deletion will not cause the
false alarm or the disclosure of any individual information. In the proposed al-
gorithm, we assume that KS contains m rows and n columns, and the corre-
sponding individuals are x l , x2 , . . . , xn . Assume that the SDB is secure, that
is, no individual has been disclosed. When k individuals are deleted from the
SDB, the corresponding k columns of KS are marked as dangling.

In an audit matrix, an entry can only be either 1 or 0. A column and a row
are directly related if their shared entry is 1. Indirectly related relation can be
defined recursively. A column/row is indirectly related to a column/row if a
directly related column/row of the former is directly/indirectly related to the

136 S.-P. Shieh, C - T . Lin / In[orrnation Sciences 113 (1999) 131-146

latter. If a co lumn/row is directly or indirectly related to another column/row,
then they are r e l a t e d . Otherwise, they are u n r e l a t e d . All related co lumns and
rows form a r e l a t e d s e t . All elements of a related set are related to each other,
and no element outside of the related set can be related to any element of the
set. For example, in Fig. 4, rl and r4 are directly related to cl; rl are indirectly

related to r4; {Cl, c3, c5, c6, c7, rl , r3, F4} is a related set.

Definition 1. Let cl, c2, • • •, ck, rl , r2,. • •, rl represent all elements of a related set
in the audit matrix. I f Cl, c2,. • •, ek are dangling columns, then
1. el, c2 , . . . , C k and rl , r2, • • • , r~ are garbage columns and rows,

respectively, and
2. the related set is called a related garbage set.

Since the garbage columns and rows of a related set are unrelated to other
columns and rows, they can be removed without affecting the subsequent secu-
rity analysis o f the audi t matr ix. The idea is formalized as Theo rem 1.

Theorem 1. Removing a related garbage set of columns and rows from KS will not
affect the subsequent security analyst's of the SDB.

Proof. Wi thou t loss of generality, assume that KS is an m x n matr ix and has a
related garbage set of k garbage columns and I garbage rows. Move all garbage
columns to the first k columns and move all garbage rows to the first I rows. In
the new matrix, by Definit ion 1, both the last (n - k) entries o f a garbage row
and the last (m - l) entries of a garbage column must be zeros. Hence, KS can
be t rans formed into a bh)ck-diagonal matr ix

1 0 2 B '

where [A] is an l x k matr ix, [B] is an (m - l) x (n - k) matr ix, [Ot] is an
l x (n - k) null-matrix, and [02] is an (m - l) x k null-matrix. Assume that
we do not remove any co lumn or row f rom this matr ix and give a new query

K S =

~ [
Cl Q ~ C4 ~ ~ C7

f 0 1 0 1 1 1] ~ ~
1 0 1 0 0 0 | ~
0 1 0 1 0 0 | ~
0 0 0 1 1 0] m

Fig. 4. A related set.

{cl, c5, c6, c7, rl, r3, r4 }
is a r e l a t e d s e t

S.-P. Shieh, C.-T. Lin / lnJbrmation Sciences 113 (1999) 131-146 137

which is not contained in KS. Since the first k individuals have been deleted
from the SDB, the first k entries of the query vector must be all zeros. Clearly,
we only need check this query against the rows in [B] to determine its legality.
[A O1] and [02] will not affect the security analysis of the SDB anymore. There-
fore, the submatrices [A], [O1], and [02] can be removed. []

Transforming an audit matrix to a block-diagonal matrix needs to move
many columns and rows. In practice, it is not necessary to move the related col-
umns and rows to determine whether they are removable. Instead, we can use
the proposed algorithm in Fig. 5, which is based on the concept of Corollary 1.

Corollary 1. Removing a column and all its related columns and rows Jrom KS
will not affect the subsequent security analysis of the SDB if all these columns are
dangling.

Proof. All these columns and rows are related. I f all these columns are
dangling, then these columns and rows tbrm a related garbage set. Removing a
related garbage set of columns and rows from KS will not affect the subsequent
security analysis of the SDB. []

The proposed algorithm F I N D I N G _ G A R B A G E in Fig. 5 is based on the
concept that garbage columns and rows are related. Whenever an individual
is deleted, the algorithm is able to find all the columns and rows related the
new dangling column. I f these columns are also dangling, then these columns
and rows are all garbage and can be removed. At the end of the algorithm,
G_Set contains the garbage columns and rows. Consequently, these columns
and rows can be removed accordingly.

In order to illustrate the use of the algorithm, we will use the same example
shown in Fig. 4, where KS is a 4 × 7 audit matrix. Columns c1,c5,c6, c 7 are
dangling columns in KS associated with the deleted individuals x1,x5,x6,x 7.
If x3 is also deleted, then column c3 is marked as dangling accordingly (see
Fig. 6(a)). For the reduction of knowledge space, we need to find the related
set which contains c3. Because the rows rl and r3 are directly related to c3,
we mark these two rows, as shown in Fig. 6(b). Then, all columns directly re-
lated to ra and r3 are marked (see Fig. 6(c)), that is, columns cl, c5, c6, and c7.
Because they are dangling columns, the process of finding related set is contin-
ued. Otherwise, the process should be stopped. Since r4 is related to Cl, c5, and
c6, the same process repeats (see Fig. 6(d)). Consequently, with the F I N D -
I N G _ G A R B A G E algorithm, the related garbage set G_Set= {Cl,C3,
c 5 , c 6 , c 7 , r l , r 3 , r 4 } is found. To represent clearly, we can move the columns
in G_Set to the first five columns and the rows in G_set to the first three rows,
then the matrix becomes a block-diagonal matrix. As shown in Fig. 6(e), the
left bot tom and right top blocks of the matrix are all O's. Fig. 6(f) shows the

138 S.-P. Shieh, C-T. Lin / Information Sciences 113 (1999) 131-146

Procedure FINDING_GARBAGE(KS: the knowledge space of the SDB;
cr~w: the new dangling column;).

begin
(;_Set := {caew); t* G_Set contains the candidates for garbage

columns and rows *I

TEMP_R := (~ I r i is a row directly related to chew};
I* TEMP_R contains the rows to be checked */

TEMP_C := 0;
ROW := {all rows in KS] - TEMP_R;
For each ~ in TEMP_R
begin

(;_Set := G_Set U {~};

F TEMP_C contains the columns to be checked */
I* ROW contains rows that haven't been checked */
/* finding garbage columns and rows */

/* ri is a candidate for garbage rows */
TEMP_C := {ci I ci is a column directly related to ~};

For each ci in TEMP_C /* checking whether q is dangling and finding its
directly related rows "/

If c/is a dangling column then r c/is a candidate for garbage columns */

ff q is not in G_Setthen /* q hasn't been checked */
G_Set := G_Set U {q};
For each row 9 directly related to ci

If tj is in ROWthen /* ~ hasn't been checked */
begin

ROW := R O W - {q};
TEMP_R:=TEMP_RU {t~}; P ,3 needs to be checked */

end
else /* ci is not a dangling column. That is, the related set

is not a related garbage set. */
begin

G_Set := 0;

return G_Set;
end

end

/* no garbage exists */

return G_Set; /* garbage columns and garbage rows are recorded in G_Set */
end

Fig. 5. The algorithm for finding garbage columns and rows.

K S after the removal of garbage columns and rows. As a result, the size of the
audit matrix is reduced.

Although we can use this method to reduce the memory requirement and
improve the performance of Chin's Audit Expert, F I N D I N G _ G A R B A G E it-
self also introduce overhead for the deletion of individuals from an SDB. In
next section, we present a new scheme to construct the knowledge space of
the SDB. It uses less space to maintain the audit matrix, and its garbage infor-

S,-P. Shieh, C.-T. L in I Information Sciences 113 (1999) 131-146 139

KS=

Cl c2 l c~

[i °°
1 1
0 0
0 0

(a)

1 1 1 ' " t f',
o o - - . - . i

° °°J tY f , FVI J
, o
1 l 0 O 1 1 0 0 0

(b) (c)
:7 c] c 3 c 5 c 6 C71E 2 C4

1) 1 0 1 I 0 010 [1 1]
- 6 G 1 0 . . I . I . Q : . O
- " " " 0 0 0 : 1

(d) (e) (f)

Fig. 6. Reduction of a knowledge space KS.

mation in the knowledge space can be easily found and removed without the
need of invoking the F I N D I N G _ G A R B A G E procedure.

3. T h e p r o p o s e d aud i t s c h e m e

In the statistical queries of SDBs, individuals with the same characteristics
tend to be queried together, and individuals with different characteristics tend
not to be queried together. It is possible to speed up the security analysis pro-
cess by taking advantage of the characteristics. In this section, we will propose
a new audit scheme which is able to efficiently distinguish illegal queries. Let G~
represent the set of individuals that were always queried together. The know-
ledge space in our scheme is represented as a set of vector spaces, t'Sl,
VS2,..., ~m, and an untouched set Z of never accessed individuals. VSi pro-
vides the knowledge regarding to the individuals that were accessed at least
in a query. VSi is represented in the matrix form where the columns are asso-
ciated with the groups, the rows are linearly independent answered query vec-
tors, and its entry indicates the status of the groups. A 1 entry indicates that all
individuals of a group are accessed. A 0 entry indicates that all individuals of a
group are not accessed.

There are three operations that are used to reconstruct the VS set: creating
new VSs and new groups, splitting groups, and merging independent VSs into
a new one. We will discuss them in the following.

3.1. Creating new VSs and new groups

If some individuals in Z are queried by a new answered query, they will form
a new group. If all the queried individuals belongs to Z, a new vector space VSi

140 S.-P. Shieh, C.-T. Lin / Information Sciemes 113 (1999) 131--146

is created which only contains a single column associated with the new group
since the new group are never queried together with other groups. I f only a sub-
set o f the queried individuals belongs to Z, a new column associated with the
subset will be added to the VSi whose groups are also queried in the new an-
swered query. As an example, assume that initially the VS set are empty, and
the set Z contains all individuals Xl, x2,. • •, xT. When the first answered vector is
invoked, the individuals which are accessed in this query should be grouped to-
gether and the others should remain in the Z set. I f the first vector is
q~ = (1,0, 1,0, 1, 1, 1), then

GI G1 = {Xl,X3,Xs,X6,XT},~

I/S, = [1] Z = {x2,x4}.

Assume the second vector g~ = (0, 1,0, 1,0, 0, 0) is invoked. The accessed indi-
viduals in ~7 and ~ are totally unrelated, and therefore a new vector space VS2
and a new group G2 are created. At the same time, the Z set must also be chan-
ged. Therefore, the VSs become

G1 G2

VS¿ = [1] VS2 = [1],

where G1 = {Xl,X3,X5,X6,X7}, G2 = {x2 ,x4} , and Z = ~5.

3.2. Spl!tting groups

When individuals that have been always queried together and included in
the same group are not queried together in the new answered query, the group
must be split. Because there are only two possible values, 0 or 1, in an answered
vector, the group must be split into two new groups: one group associated with
the l ' s and the other g roup associated with the O's in the new answered vector.
The two new columns associated with the two new groups have the same values
as the old column associated with the original group. A new row will also be
inserted into the new vector space V&. With the same example above, assume
that the third answered query is g3 = (0, 0, 1,0, 1,0, 0), where only x3 and x5
are queried together. Thus, G1 is split into two new groups, Gl and G3. The
new V& and groups are listed as follows:

G1 G3 G1 = {xl,x6,xT},

V& = 1 VS2 = [1] O~ = {x3, x5 },

Z = ~ .

S.-P. Shieh, C-T. Lin / Information Sciences 113 (1999) 131 146 141

Notice that, except the second row in the new VS1, the two new columns asso-
ciated with the new G1 and G3 have the same values as the old one associated
with the old G1.

3.3. Merging the VSs

When the individuals of different VSs are queried together, these VSs must
be merged into a new one. Thus, a h x m VSi and a k x n VSj will be merged into
a (k + h) x (n + rn) VSk. The k x nVSj must be expanded by padding with m all-
'0' columns before merging with a h × m VSi. Similarly, the h x m I/X~ also need
to be expanded by padding with n all-*0' columns. Using the previous example,
assume that the fourth query N = (0, 1, 1,1, 1,0, 0) is invoked, then VS1 and
VS2 are merged because that G2 and G3 are queried together. Note that the
new query vector will not be inserted into the new VS1 because it can be com-
puted as r2 + r3, and thus is not linearly independent of the rows of VS1. The
merging process is shown as follows.

a~ a3

G2
VS2"= [t l

expand and pad

GI G3 G2 [1o]
VSI ' = 1

GiG3 (32

vs2'= [o 0 1]

merge VS1' GI G~ G~ [00' !J with VS2' ,. VS1 = 1

0

The VS set is reconstructed if any of the three operations described above is
invoked by a new answerable query. The algorithm for reconstructing the
VSs is summarized in Fig. 7. The algorithm itself is self-explanatory. Its input
parameters are the new answerable query ~, the untouched set Z, and the set of
vector spaces VSs. The output is the modified knowledge space, including the
VS set and Z. The reconstruction of the VS set is scarcely needed if individuals
with similar characteristics tend to be queried together, and individuals with
the different characteristics tend not to be queried together in the answered
queries. In this case, the time spent on reconstructing the VSs can be ignored.

With the VS set presented in our scheme, we are able to distinguish illegal
queries. The checking process within a VS is similar to that within a K S in
Chin's scheme. An SDB is compromised if there exists a row containing a sin-
gle ' l ' -en t ry in its VSs and the corresponding group contains only a single in-
dividual. Otherwise, the SDB is still secure after answering the query.

142 S.-P. Shieh, C-T. Lin I Information Sciences 113 (1999) 131-146

Procedure Reconstruct_VS (q, Z, VSs)
Begin

l := the set of individuals that are queried by q;
if (I c Z) then /*all of the queried individuals are accessed in Z*/

begin
Combine the individuals into a new group;
Create a new V$ which only contains the new group;
Z = Z \ i ;

end
else if (I N Z = ~) then /*none of the queried individuals are in Z*/

begin
if only the subset of a group is queried then

split the group;
if the groups in different VSs are queried together then

merge these VSs;
end

else /*! N Z -~ 0"/
begin

Create a new group for the queried individuals taken from Z;
Add a new column, associated with the new group, to the VS;
Pad the column with O's.
Z : Z \ I ;
if only the subset of a group is queried then

split the group;
If the groups in different vss are queried together then

merge these VSs;
end

End
Fig. 7. Algorithm for reconstructing VSs.

4. Updates in a dynamic SDB

The insertion and deletion of individuals in our scheme is easy. In a dynamic
SDB, whenever a new individual is inserted into the SDB, the individual is di-
rectly inserted into the set Z because it is never accessed before. On the other
hand, when an individual is deleted from the database, it can be removed from
Z without modifying VSs if it belongs to the set Z. Otherwise, we must consid-
er two cases. Assume that the deleted individual xi belongs to the group Gj
which is contained in VSk. In the first case, Gj contains at least one individual,
excluding xi, that has not yet been deleted. All we have to do is to mark xi as
deleted. In the second case that all individuals, except xi, contained in Gj have
been marked as deleted, Gj must be deleted and the corresponding column of
Gj is considered as a dangling column, which is similar to what we introduced in

S.-P. Shieh, C.-T. L& / Information Sciences 113 (1999) 131-146 143

the enhanced Audit Expert. These dangling columns cannot arbitrarily re-
moved from VSs. The proposed scheme has some interesting characteristics
that can help reduce the space requirement of VSs.

Definition 2. Two groups Gi and Gj are related, if
(i) G/and Gj were queried in the same query, or
(ii) there exists another group Gk' such that (a) Gk' and Gi were queried to-

gether; (b) Gk' and G) are related.

This is a recursive definition. In condition (ii), we can continue expanding
the relationship between Gk' and Gj. The recursive expansion is stopped when
condition (ii) (a) is reached. Thus, Gi, G/, and the expanded groups Gk' are all
related.

Theorem 2. Groups are related, i f and only if they are contained in the same VS.

Proof. (=~) Without loss of generality, assume groups Gi and Gj are related. We
need to consider two cases with respect to the two conditions of Definition 2.
The first case is that Gi and Gj are queried by the same query ~ and they
originally belong to two different VSs. As a result of the query ~, these two VSs
must be merged so that Gi and Gj are contained in the new VS. In the second
case, assume that Gi was queried together with Gl', Gl' was queried together
with G~,.. . , and Gn' was queried with G/. In the same way as above, we know
Gg and GI' are in the same VS, GI' and G2' are in the same VS,. . . , and Gn' and
Gj are in the same VS. Thus Gi and Gj are in the same VS.

(~) We can prove this by a simple induction.
(i) It is trivial when the VS contains only one group.
(ii) We hypothesize that all n groups in the VS are related.
Based on the above hypothesis, we add a new group G,+I to this VS and

verify whether the n + 1 groups are still related or not. By the operations of
the VSs, only the following three cases will generate new groups.

Case I: Creating new VSs and new groups. In this case, the new group G~+I
is extracted from the set Z and is first queried together with some group G~ in
the VS, that is, Gn+l must be related to G~. Therefore, Gn+l is related to the oth-
er n groups.

Case II: Splitting the group. By the definition of this operation, the old
group Gi is split into two groups Gi' and Gn+l. So Gi' and G,+1 are related,
and as G~ they are also related to the other n - 1 groups in the VS.

Case III: Merging the VSs. If G,+I is contained in another VS and merged
into this VS, by the definition of this operation, G,+I must be queried together
with some group Gi in the VS. Therefore, in the merged VS, G,+I is related to
all other groups.

144 S.-P. Shieh, C.-T. Lin / Information Sciences 113 (1999) 131 146

Consequently, all groups in the VS are still related while new groups are
added to the VS. Thus, we induce that the groups in the same VS must be re-
lated. []

Since the groups in different VSs are unrelated to each other, security anal-
ysis of a query can usually be done in a VS rather than all VSs, and the deletion
of the groups in a VS will not affect the security analysis of the groups in the
other VSs. In the proposed scheme, the reduction of VSs is simple. The extra
overhead for invoking F I N D I N G _ G A R B A G E to find garbage columns and
rows is not needed. The idea can be described in Theorem 3.

Theorem 3. VSi contains a related set of garbage columns and rows, if and only if
all groups in VSi are deleted.

Proof. (=~) Assume that Gj is an undeleted group associated with column cj in
VS~. By Theorem 1, we can transform the matrix of VSi into a block-diagonal
matrix

A O1]

02 B '

where ci is contained in

E;I
Obviously, VS,. can be divided into two independent vector spaces VS,.' and
VS/' for [A] and [B], respectively. This result conflicts with the characteristic
of the vector space that all groups of a VS are related.

(~) It is trivial. I f all groups belonging to VSi are deleted, all columns of VSi
are dangling. Since the columns and rows of VS~ are related, according to The-
orem 2, they form a related set of garbage columns and rows. []

Because groups in different VSs are unrelated, removing the entire VSi will
not affect the security analysis of other VSs. Therefore, by Theorem 3, the size
of the knowledge space can be reduced by removing the entire VS and its
groups. Unlike the enhanced Audit Expert, our scheme does not need to ana-
lyze the related relation between columns and rows in a VS, that is, the F I N D -
I N G _ G A R B A G E algorithm in Section 2 is not needed in our scheme. Instead,
our scheme only need to check whether all groups in a VS are deleted. I f all
groups of a VS are deleted, then the VS and its groups can be removed. Oth-
erwise, no columns or rows can be removed. It is clear that the proposed
scheme is more efficient than the enhanced Audit Expert.

S.-P. Shieh, C.-T Lin / Information Sciences 113 (1999) 131-146 145

5. Complexity

In Chin's scheme, it takes no more than O(KN) steps to check the security of
the SDB and determine whether a new query vector -~ c K × N KS [13], where
N is equal to the sum of the total number of individuals in an SDB (na) and
that of the deleted ones (rid). In our scheme, all groups of individuals are par-
titioned, and the groups in a partition only corresponds to the columns of a
VS. The knowledge space is split into v different ki × ni vector spaces VSi,
where i = 1 , . . . , v, }--~i'/'ti ~ U and y ~ ki ~< K. It takes O(ki.ni) steps in our audit
scheme to check the security of the SDB and determine whether the new query
vector ~ E VS~. In general, n~ is far smaller than N and k~ is far smaller than K.
Consider an average case where each group contains u individuals and each
vector space contains equal number of columns (n) and rows (k). The complex-
ity of our scheme for checking the security of the SDB becomes O(kn), which
can also be represented as O ((K/v)(N/uv)) . Furthermore, in a dynamic SDB
where ninety percent of the individuals (na/N = 90%). are deleted and their
corresponding columns are garbage, the complexity can be further reduced
to O ((K/lOv)(N/lOuv)). Comparing with the O(KN) of Chin's scheme, our
scheme performs better.

6. Conclusions

In the paper, we propose a method to enhance Audit Expert. This method is
able to resolve the space explosion problem caused by insertion and deletion in
a dynamic SDB. Our algorithm can detect the garbage columns and rows, and
thus reduce the knowledge space KS. Furthermore, we propose a new audit
scheme which is also able to determine the security of an SDB. In this scheme,
we further reduce the size of the knowledge space KS and thus save time and
storage spent on analyzing a new query against the KS. The reduction process
in the scheme is simpler and more efficient than that in the enhanced Audit Ex-
pert. The removal of garbage columns and rows can keep KS small, and speed-
up the security analysis in a dynamic SDB.

Our future work is to extend the audit scheme to a large distributed SDB
system. Extension of the audit scheme to a distributed environment is not
easy because the merging of distributed VSs are difficult to perform. Further
investigation is needed to explore the relationship between distributed database
servers. Another interesting research related to this work is regarding to
the design of a common kernel for secure SDB systems. This study will
try to combine the audit scheme with database access control mechanisms.
With the secure common kernel, it is easier to design a secure and efficient
SDB system.

146 S.-P. Shieh, C.-T. Lin / Injbrmation Sciences 113 (1999) 131-146

Acknowledgements

This work was supported in part by the National Science Council of Taiwan
under grant number NSC-85-2213-E-009-032.

References

[1] M. Mogenstern, Controlling logical inference in multilevel database systems, in: Proceedings
of The IEEE CS Symposium on Security and Privacy, April 1988, pp. 245-255.

[2] H.S. Delugach, T.H. Hinke, Wizard: A database inference analysis and detection system,
IEEE Trans. Knowledge and Data Eng. 8 (1) (1996) 56-66.

[3] J.C. Wortmann, N.R. Adam, Security-control methods for statistics databases: A comparative
study, ACM Computing Surveys 21 (4) (1989) 515-554.

[4] F.Y. Chin, G. Ozsoyoglu, Statistical database design, ACM Trans. Database Systems 6 (1)
(1981) 113-139.

[5] D.E. Denning, A security model for the statistical database problem, in: Proceedings of The
Second International Workshop on Management, 1983, pp. 1 16.

[6] D.E. Denning, J. Schlorer, Inference control for statistical databases, Computer 16 (7) (1983)
69-82.

[7] D.E. Denning, Secure statistical databases under random sample queries, ACM Trans.
Database Systems 5 (3) (1980) 291-315.

[8] G. Ozsoyoglu, T.A. Su, On inference control in semantic data models for statistical databases,
Journal of Computer and System Sciences 40 (3) (1990) 405-443.

[9] S.B. Reiss, The practicality of data swapping, Technical Report No. CS-48, Dept. of
Computer Science, Brown Univ., Providence, RI, 1979.

[10] S.B. Reiss, Practical data-swapping: The first steps, in: Proceedings of The 1980 Symposium
on Security and Privacy, IEEE Computer Society, April 1980, pp. 38-45.

[11] S.B. Reiss, Practical data-swapping: The first steps, ACM Trans. Database Systems, March
(1984) 2t~37.

[12] J. Schlorer, Security of statistical databases: Multidimensional transformation, ACM Trans.
Database Systems 6 (1) (1981) 95-112.

[13] J.F. Traub, Y. Yemini, H. Wozniakowski, The statistical security of a statistical database,
ACM Trans. Database Systems 9 (4) (1984) 672 679.

[14] D.E. Denning, Cryptography and Data Security, Addison Wesley, Reading, MA.
[15] D. Dobkin, A.K. Jones, R.J. Lipton, Secure databases: Protection against user inference,

ACM Trans. Database Systems 4 (1) (1979) 97 106.
[16] F.Y. Chin, G. Ozsoyoglu, Auditing and inference control in statistical databases, IEEE Trans.

Software Eng., April (1982) 574-582.
[17] F.Y. Chin and G. Ozsoyoglu, Security in partitioned dynamic statistical databases, in:

Proceedings of The IEEE COMPSAC, 1979, pp. 594-601.
[18] M. McLeish, Further result on the security of partitioned dynamic statistical databases, ACM

Trans. Database Systems 14 (1) (1989) 98 113.
[19] L.H. Cox, Suppression methodology and statistical disclosure control, J. Am. Statist. Assoc.

75 (370) (1980) 377--385.

