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Abstract 

Chin proposed an audit scheme for inference control in statistical databases (SDBs) 
which can determine whether or not a query will lead to the compromise of an SDB. As 
Chin points out that the dynamic updates of an SDB are prohibited in this scheme be- 
cause, otherwise, the time and storage requirements will become infinite. The restriction 
limits the use of this scheme since many SDBs need to be dynamically updated. In this 
paper, we propose an algorithm to remove this restriction so that updates can be al- 
lowed. We also propose an efficient audit scheme for dynamic SDBs which requires less 
time and storage requirements, and does not have the space explosion problem that ap- 
pears in Chin's scheme. © 1999 Elsevier Science Inc. All rights reserved. 
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1. Introduction 

A stat is t ical  d a t a b a s e  (SDB) is a da t abase  tha t  conta ins  sensitive records  de- 
scribing indiv iduals  but  only  stat is t ical  i n fo rma t ion  is avai lable .  SDBs are 
main ly  used for  s ta t is t ical  analysis  where  only  stat is t ical  queries, such as 
S U M ,  A V E R A G E ,  C O U N T  are  avai lab le  and  in fo rma t ion  o f  indiv iduals  can-  
not  be disclosed.  SDBs  are  used in m a n y  appl ica t ions ,  such as census data ,  
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mortality data, and economic planning. A typical example of SDB is illustrated 
in Fig. 1. In the SDB, the scores of individuals should not be disclosed, and 
therefore A V E R A G E ( I D =  1, Score), the average score of students with 
ID 1, is an illegal query. But statistical queries, such as COUNT(ALL)  and 
AVERAGE(Address = "New York",  Score) are legal. Although users are only 
allowed to access the statistical information from an SDB, they can infer the 
confidential individual information by invoking a series of legal queries. When 
any confidential information is disclosed, the SDB is compromised. For exam- 
ple, both AVERAGE(Addres s="New York",  Score) and AVERAGE 
(Dept. = "C.S.", Score) are legal queries. A user can infer the confidential in- 
formation (the score of ID 3) by computing the difference between these two 
queries. If both queries are answered, the SDB will be compromised. Therefore, 
the SDB should deny one of the two queries to protect the individual informa- 
tion. 

In practice, many SDBs are dynamic. That is, the individual records of an 
SDB need to be inserted, deleted and updated dynamically to keep statistical 
information fresh. A user may infer confidential information from the updates 
of a dynamic SDB. For  example, when invoking the query AVERAGE(Gender  
= "M",  Score) before and after inserting a new record with gender " M "  into 
the SDB shown in Fig. 1, the invoker can infer the new record's score from the 
change of the answers. Therefore, not only the old and the new values of an 
individual, but also the change of an SDB should be protected. 

There are many inference control methods proposed to protect various da- 
tabase systems, such as multilevel security database [1-3]. Those methods for 
SDBs can be classified into three classes: conception, perturbation, and query re- 
striction. The conceptual model provides a framework for investigating the se- 
curity problem at the conceptual-data-model level [4]. A popular approach for 
the conceptual model is the lattice model [5,6]. This model presents a frame- 
work for better understanding and investigating the security problem of SDBs, 
but gives too many constraints for users. Perturbation approaches [7-13] intro- 
duce noise in the data, or perturb the answer to user queries while leaving the 
data in the SDB unchanged. These approaches cannot provide precise answers 
to users. Query restriction methods impose extra restriction on queries which 
includes restricting the query set size [14], controlling the overlap among suc- 

ID Gend~l- 
1 F 
2 M 
3 M 
4 F 

Address  Dept .  Score  

New York C.S. 82 
Washington M.E. 75 
Washington C.S. 71 
New York C.S. 83 

Fig. 1. A statistical database. 
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cessive queries [15], auditing [16], partitioning [17,18] and suppressing cells [19]. 
Some of them cannot guarantee high security assurance, while others limit the 
usefulness of the SDBs. 

Chin et al. proposed an inference control scheme, Audit Expert [16], which 
uses the query restriction approach. Audit Expert maintains a matrix to audit 
the history of user's queries and check if a new query will lead to the compro- 
mise of an SDB. Audit Expert can provide high assurance of security of  SDBs, 
and need not impose extra restriction on user queries. Chin points out that Au- 
dit Expert is only applicable to static SDBs. In a dynamic SDB where individ- 
ual data is dynamically updated, the audit matrix will be full of  garbage 
columns and rows and its size may become infinite. Consequently, the time 
and storage requirements for the analysis of the audit matrix are quite high. 
Audit Expert suffers from the time and storage space explosion problem and 
thus is not applicable to dynamic SDBs. Since many SDBs are dynamic, this 
restriction limits the use of Audit Expert. In this paper, we investigate how 
to remove the restriction on the use of Chin's Audit Expert, and then propose 
an efficient audit scheme which requires less storage and time for the statistical 
analysis. This new audit scheme not only provides high security assurance and im- 
poses no extra restriction on user queries, but also is applicable to dynamic SDBs. 

This paper is organized as follows. In next section, Chin's scheme is intro- 
duced and a new method for reducing ils time and space requirements is pro- 
posed. With the proposed method, Chin's scheme can be extended so that it 
can be used in dynamic SDBs. In Section 3, we propose a new audit scheme 
which can protect dynamic SDBs in a more efficient way. Section 4 discusses 
the updates of  a dynamic SDB in our scheme. In Sections 5 and 6, we analyze 
the complexity of the proposed scheme, and give the conclusions. 

2. Chin's scheme and the enhancement 

In Chin's scheme, the SDB consists of n individuals xi, 1 <~ i <~ n. For nota- 
tional simplicity, each individual xi is assumed to have a single protected nu- 
merical attribute value, and each answered query reveals a set of individual 
records {x i , x j , x k , . . . } .  Hence, each answered query can be represented by a 
vector (aj, a2, . . .  ,an), where ai = 1, if x~ is accessed in this query. The user's 
knowledge space K S  is the vector space spanned by the set of vectors of  an- 
swered queries A Q. Formally, K S  has the following properties. 
1. I f ~  E AQ, then ~ E KS. 
2. If ~ E KS, then b~ E KS; b is a real number. 
3. If ~ , ~ 5  E KS, then ~ + ~  E KS. 
4. Nothing else is in KS. 
K S  can be represented by a maximal set of nonredundant vectors of AQ. For  
example in Fig. 1, 



134 S.-P. Shieh, C.-T. Lin / Information Sciences 113 (1999)  131-146 

q-i = (1,0,0, 1) 
q--~ = (1,0, 1, 1) 

We have 

(SUM of the scores of  the people living in NewYork), 
(SUM of the scores of  the people majoring in C.S.). 

KS= 

Cl C2 C3 C4 

[,°°, 1 1 0 1 1 ' 

where ci represents the column associated with individuals xi. Notice that the 
vectors in KS are linear independent. Therefore, the number of  rows cannot ex- 
ceed the number of  columns in KS. The SDB is compromised if there exists a 
vector of  the form (0 , . . .  ,0, 1 ,0 , . . .  ,0) in KS. Unfortunately, Chin's scheme 
suffers from space explosion problems if the SDB is dynamically updated. In 
Chin's scheme, when an individual of  an SDB is inserted, a new column corre- 
sponding to this individual is inserted to KS. Since the new individual has not 
yet been queried, all entries of  the new column are zeros. On the other hand, 
when an individual is deleted, the corresponding column, called the dangling 
column, cannot be directly removed from the KS matrix for the protection of 
individual information. 

If we directly delete the dangling columns to reduce the size of  KS, the de- 
letion may cause both false alarms and security disclosure. A false alarm is 
raised when a vector with a single " I "  is found in the audit matrix but the cor- 
responding individual is not disclosed. On the other hand, security disclosure 
occurs when the audit matrix does not have any vector with a single 1, but 
the secret of  an individual is disclosed. For  example in Fig. 2, the individual 
x2 is deleted from SDB. If  we remove the corresponding column c2 in KS, 
the audit matrix will report that x4 is disclosed and the SDB is compromised. 
(That is, according to the second row recorded in new KS, the vector (0, 0, 1, 0, 
0, 0) contains a single 1 at the position of  x4.) In fact, x4 is still undisclosed at 
this time. Thus, a false alarm has been raised. 

Another example illustrated for security disclosure is shown in Fig. 3. In this 
example, the individual xl is deleted from the SDB. It seems reasonable to de- 
lete the column cl. However, the deletion of  the column will cause disclosure of  
secret information. Assume that a new answered query, (0,1,0,1,1,1), is invoked 
in KS after the deletion. The audit scheme will check KS and consider it as a 

cl c2 c3 ¢4 e$ c6 c7 Cl c3 ¢4 c5 c6 c 7 

KS = 1 0 1 0 0  SDB and thec2column KS = 0 1 0 0  
0 1 1  1 0  is removed m 1 1 1 0  

0 0 0 1 1  0 0  ! 1 

Fig. 2. Deletion that causes a false alarm. 
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c/ c2 cj c~ c5 c~ c7 

f 0 0 t  1 0 1 0 0  
0 1 0 1 0  
0 0 0 1  I 

xl is deleted from the SDB 
and the corresponding col- 
umn ci is removed from KS 

KS= 

c2 c3 c~ ~ ~ c7 

f ° 
0 1 0 0  
1 0 1 0  
0 0 1 1  

(0,1,0,1,1,1) is invoked 
-" KS= 

c2 c3 ~ CJ c~ c7 

l'°"00] --- 0,00 ] 
1 0 1 0  
0 0 1 1  

r/ 

Fig. 3. Delet ion tha t  causes disclosure o f  secret in format ion .  

redundant answerable query, which is the same as rl. As a result, KS remains 
unchanged and the query is answered. Thus, the secret information of  the de- 
leted Xl is disclosed. 

The two examples above demonstrate that we cannot arbitrarily remove a 
column in a KS when the corresponding individual is deleted from the SDB. 
Therefore, the size of  KS will only be expanded without any upper bound when 
the individuals of  a finite-size SDB are dynamically inserted, deleted or updat- 
ed. It is possible to have a large KS for a small SDB. Substantial memory  and 
CPU time are wasted in handling these columns. It is not efficient to check the 
entire KS matrix for every query, when the number of  the rows and the col- 
umns in KS is large. To cope with the problem, Chin imposes the restriction 
on the scheme that it can only be used in static SDBs. The restriction limits 
the use of  the scheme. A method for the reduction of  KS is desirable. 

2.1. The enhancement 

In this section, we propose an algorithm for the reduction of  KS size. With 
this algorithm, Chin's scheme can be enhanced so that it can be used in a dy- 
namic SDB. As described above, in order to guarantee the security of  an SDB, 
all dangling columns cannot be arbitrarily deleted f rom the KS. However, it is 
possible to delete part  of  the dangling columns if the deletion will not cause the 
false alarm or the disclosure of  any individual information. In the proposed al- 
gorithm, we assume that KS contains m rows and n columns, and the corre- 
sponding individuals are x l , x2 , . . . , xn .  Assume that the SDB is secure, that 
is, no individual has been disclosed. When k individuals are deleted from the 
SDB, the corresponding k columns of  KS are marked as dangling. 

In an audit matrix, an entry can only be either 1 or 0. A column and a row 
are directly related if their shared entry is 1. Indirectly related relation can be 
defined recursively. A column/row is indirectly related to a column/row if a 
directly related column/row of  the former is directly/indirectly related to the 
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latter. If  a co lumn/row is directly or indirectly related to another  column/row,  
then they are r e l a t e d .  Otherwise, they are u n r e l a t e d .  All related co lumns  and 
rows form a r e l a t e d  s e t .  All elements of  a related set are related to each other, 
and  no element outside of the related set can be related to any  element of the 
set. For  example, in Fig. 4, rl and r4 are directly related to cl; rl are indirectly 

related to r4; {Cl, c3, c5, c6, c7, rl ,  r3, F4} is a related set. 

Definition 1. Let cl, c2, • • •, ck, rl ,  r2,. • •, rl represent  all elements of  a related set 
in the audit  matrix.  I f  Cl, c2,. • •, ek are dangling columns,  then 
1. el, c2 , . . . ,  C k and rl , r2, • • • ,  r~ are garbage columns and rows, 

respectively, and 
2. the related set is called a related garbage set. 

Since the garbage columns and rows of  a related set are unrelated to other  
columns and rows, they can be removed without  affecting the subsequent  secu- 
rity analysis o f  the audi t  matr ix.  The idea is formalized as Theo rem 1. 

Theorem 1. Removing a related garbage set of  columns and rows from KS will not 
affect the subsequent security analyst's of  the SDB. 

Proof.  Wi thou t  loss of  generality, assume that  KS is an m x n matr ix  and has a 
related garbage set of  k garbage  columns and I garbage  rows. Move  all garbage 
columns to the first k columns and move  all garbage  rows to the first I rows. In 
the new matrix,  by Definit ion 1, both  the last (n - k) entries o f  a garbage  row 
and the last (m - l) entries of  a garbage column must  be zeros. Hence,  KS can 
be t rans formed into a bh)ck-diagonal matr ix  

1 0 2  B ' 

where [A] is an l x k matr ix,  [B] is an (m - l) x (n - k) matr ix,  [Ot] is an 
l x (n - k )  null-matrix,  and [02] is an (m - l) x k null-matrix.  Assume that  
we do not  remove  any co lumn or row f rom this matr ix  and give a new query 

K S =  

~ [ 
Cl Q ~ C4 ~ ~ C7 

f 0 1 0 1 1 1 ] ~ ~  
1 0 1 0 0 0 | ~  
0 1 0 1 0 0 | ~  
0 0 0 1 1 0 ] m  

Fig. 4. A related set. 

{cl, c5, c6, c7, rl, r3, r4 } 
is a r e l a t e d  s e t  
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which is not contained in KS. Since the first k individuals have been deleted 
from the SDB, the first k entries of  the query vector must be all zeros. Clearly, 
we only need check this query against the rows in [B] to determine its legality. 
[A O1] and [02] will not affect the security analysis of  the SDB anymore. There- 
fore, the submatrices [A], [O1], and [02] can be removed. [] 

Transforming an audit matrix to a block-diagonal matrix needs to move 
many columns and rows. In practice, it is not necessary to move the related col- 
umns and rows to determine whether they are removable. Instead, we can use 
the proposed algorithm in Fig. 5, which is based on the concept of  Corollary 1. 

Corollary 1. Removing a column and all its related columns and rows Jrom KS 
will not affect the subsequent security analysis of  the SDB if all these columns are 
dangling. 

Proof. All these columns and rows are related. I f  all these columns are 
dangling, then these columns and rows tbrm a related garbage set. Removing a 
related garbage set of columns and rows from KS will not affect the subsequent 
security analysis of the SDB. [] 

The proposed algorithm F I N D I N G _ G A R B A G E  in Fig. 5 is based on the 
concept that garbage columns and rows are related. Whenever an individual 
is deleted, the algorithm is able to find all the columns and rows related the 
new dangling column. I f  these columns are also dangling, then these columns 
and rows are all garbage and can be removed. At the end of  the algorithm, 
G_Set contains the garbage columns and rows. Consequently, these columns 
and rows can be removed accordingly. 

In order to illustrate the use of  the algorithm, we will use the same example 
shown in Fig. 4, where KS is a 4 × 7 audit matrix. Columns c1,c5,c6, c 7 are 
dangling columns in KS associated with the deleted individuals x1,x5,x6,x 7. 
If  x3 is also deleted, then column c3 is marked as dangling accordingly (see 
Fig. 6(a)). For  the reduction of knowledge space, we need to find the related 
set which contains c3. Because the rows rl and r3 are directly related to c3, 
we mark  these two rows, as shown in Fig. 6(b). Then, all columns directly re- 
lated to ra and r3 are marked (see Fig. 6(c)), that is, columns cl, c5, c6, and c7. 
Because they are dangling columns, the process of  finding related set is contin- 
ued. Otherwise, the process should be stopped. Since r4 is related to Cl, c5, and 
c6, the same process repeats (see Fig. 6(d)). Consequently, with the F I N D -  
I N G _ G A R B A G E  algorithm, the related garbage set G_Set= {Cl,C3, 
c 5 , c 6 , c 7 , r l , r 3 , r 4 }  is found. To represent clearly, we can move the columns 
in G_Set to the first five columns and the rows in G_set to the first three rows, 
then the matrix becomes a block-diagonal matrix. As shown in Fig. 6(e), the 
left bot tom and right top blocks of  the matrix are all O's. Fig. 6(f) shows the 
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Procedure FINDING_GARBAGE(KS: the knowledge space of the SDB; 
cr~w: the new dangling column;). 

begin 
(;_Set := {caew); t* G_Set contains the candidates for garbage 

columns and rows *I 

TEMP_R := (~ I r i is a row directly related to chew}; 
I* TEMP_R contains the rows to be checked */ 

TEMP_C := 0; 
ROW := {all rows in KS] - TEMP_R; 
For each ~ in TEMP_R 
begin 

(;_Set := G_Set U {~}; 

F TEMP_C contains the columns to be checked */ 
I* ROW contains rows that haven't been checked */ 
/* finding garbage columns and rows */ 

/* ri is a candidate for garbage rows */ 
TEMP_C := {ci I ci is a column directly related to ~}; 

For each ci in TEMP_C /* checking whether q is dangling and finding its 
directly related rows "/ 

If c/is a dangling column then r c/is a candidate for garbage columns */ 

ff q is not in G_Setthen /* q hasn't been checked */ 
G_Set := G_Set U {q}; 
For each row 9 directly related to ci 

If tj is in ROWthen /* ~ hasn't been checked */ 
begin 

ROW := R O W -  {q}; 
TEMP_R:=TEMP_RU {t~}; P ,3 needs to be checked */ 

end 
else /* ci is not a dangling column. That is, the related set 

is not a related garbage set. */ 
begin 

G_Set := 0;  

return G_Set; 
end 

end 

/* no garbage exists */ 

return G_Set; /* garbage columns and garbage rows are recorded in G_Set */ 
end 

Fig. 5. The algorithm for finding garbage columns and rows. 

K S  after the removal of  garbage columns and rows. As a result, the size of  the 
audit matrix is reduced. 

Although we can use this method to reduce the memory requirement and 
improve the performance of  Chin's Audit Expert, F I N D I N G _ G A R B A G E  it- 
self also introduce overhead for the deletion of  individuals from an SDB. In 
next section, we present a new scheme to construct the knowledge space of 
the SDB. It uses less space to maintain the audit matrix, and its garbage infor- 
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KS= 

Cl c2 l c~ 

[i °°  
1 1 
0 0 
0 0 

(a) 

1 1 1  ' "  t f', 
o o  - - .  - .  i 

° °°J tY f , FVI J 
, o  
1 l 0 O 1 1 0  0 0 

(b) (c) 
:7 c] c 3 c 5 c 6 C71E 2 C4 

1 ) 1 0 1 I 0 010 [1 1] 
- 6 G 1 0 . . I . I . Q : . O  
- " " " 0 0 0 : 1  

(d) (e) (f) 

Fig. 6. Reduction of a knowledge space KS.  

mation in the knowledge space can be easily found and removed without the 
need of invoking the F I N D I N G _ G A R B A G E  procedure. 

3. T h e  p r o p o s e d  aud i t  s c h e m e  

In the statistical queries of  SDBs, individuals with the same characteristics 
tend to be queried together, and individuals with different characteristics tend 
not to be queried together. It is possible to speed up the security analysis pro- 
cess by taking advantage of  the characteristics. In this section, we will propose 
a new audit scheme which is able to efficiently distinguish illegal queries. Let G~ 
represent the set of individuals that were always queried together. The know- 
ledge space in our scheme is represented as a set of  vector spaces, t'Sl, 
VS2,..., ~m, and an untouched set Z of  never accessed individuals. VSi pro- 
vides the knowledge regarding to the individuals that were accessed at least 
in a query. VSi is represented in the matrix form where the columns are asso- 
ciated with the groups, the rows are linearly independent answered query vec- 
tors, and its entry indicates the status of  the groups. A 1 entry indicates that all 
individuals of a group are accessed. A 0 entry indicates that all individuals of  a 
group are not accessed. 

There are three operations that are used to reconstruct the VS set: creating 
new VSs and new groups, splitting groups, and merging independent VSs into 
a new one. We will discuss them in the following. 

3.1. Creating new VSs and new groups 

If  some individuals in Z are queried by a new answered query, they will form 
a new group. If  all the queried individuals belongs to Z, a new vector space VSi 
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is created which only contains a single column associated with the new group 
since the new group  are never queried together with other groups. I f  only a sub- 
set o f  the queried individuals belongs to Z,  a new column associated with the 
subset will be added to the VSi whose groups  are also queried in the new an- 
swered query. As an example, assume that initially the VS set are empty,  and 
the set Z contains all individuals Xl, x2,. • •, xT. When  the first answered vector is 
invoked, the individuals which are accessed in this query should be grouped to- 
gether and the others should remain in the Z set. I f  the first vector is 
q~ = (1,0, 1,0, 1, 1, 1), then 

GI G1 = {Xl,X3,Xs,X6,XT},~ 

I/S, = [1] Z = {x2,x4}. 

Assume the second vector g~ = (0, 1,0, 1,0, 0, 0) is invoked. The accessed indi- 
viduals in ~7 and ~ are totally unrelated, and therefore a new vector space VS2 
and a new group G2 are created. At the same time, the Z set must  also be chan- 
ged. Therefore,  the VSs become 

G1 G2 

VS¿ = [1] VS2 = [1], 

where G1 = {Xl,X3,X5,X6,X7}, G2 = {x2 ,x4} ,  and Z = ~5. 

3.2. Spl!tting groups 

When individuals that  have been always queried together and included in 
the same group are not  queried together in the new answered query, the group 
must  be split. Because there are only two possible values, 0 or  1, in an answered 
vector, the group must  be split into two new groups:  one group associated with 
the l ' s  and the other  g roup  associated with the O's in the new answered vector. 
The two new columns associated with the two new groups  have the same values 
as the old column associated with the original group.  A new row will also be 
inserted into the new vector space V&. With the same example above, assume 
that  the third answered query is g3 = (0, 0, 1,0, 1,0, 0), where only x3 and x5 
are queried together. Thus,  G1 is split into two new groups, Gl and G3. The 
new V& and groups are listed as follows: 

G1 G3 G1 = {xl,x6,xT}, 

V& = 1 VS2 = [1] O~ = {x3, x5 }, 

Z = ~ .  
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Notice that, except the second row in the new VS1, the two new columns asso- 
ciated with the new G1 and G3 have the same values as the old one associated 
with the old G1. 

3.3. Merging the VSs 

When the individuals of  different VSs are queried together, these VSs must 
be merged into a new one. Thus, a h x m VSi and a k x n VSj will be merged into 
a (k + h) x (n + rn) VSk. The k x nVSj must be expanded by padding with m all- 
'0' columns before merging with a h × m VSi. Similarly, the h x m I/X~ also need 
to be expanded by padding with n all-*0' columns. Using the previous example, 
assume that the fourth query N = (0, 1, 1,1, 1,0, 0) is invoked, then VS1 and 
VS2 are merged because that G2 and G3 are queried together. Note that the 
new query vector will not be inserted into the new VS1 because it can be com- 
puted as r2 + r3, and thus is not linearly independent of  the rows of VS1. The 
merging process is shown as follows. 

a~ a3 

G2 
VS2"= [ t l  

expand and pad 

GI G3 G2 [ 1o] 
VSI ' = 1 

GiG3 (32 

vs2'= [o 0 1] 

merge VS1' GI G~ G~ [00' !J with VS2' ,. VS1 = 1 

0 

The VS set is reconstructed if any of the three operations described above is 
invoked by a new answerable query. The algorithm for reconstructing the 
VSs is summarized in Fig. 7. The algorithm itself is self-explanatory. Its input 
parameters are the new answerable query ~, the untouched set Z, and the set of  
vector spaces VSs. The output is the modified knowledge space, including the 
VS set and Z. The reconstruction of  the VS set is scarcely needed if individuals 
with similar characteristics tend to be queried together, and individuals with 
the different characteristics tend not to be queried together in the answered 
queries. In this case, the time spent on reconstructing the VSs can be ignored. 

With the VS set presented in our scheme, we are able to distinguish illegal 
queries. The checking process within a VS is similar to that within a K S  in 
Chin's scheme. An SDB is compromised if there exists a row containing a sin- 
gle ' l ' -en t ry  in its VSs and the corresponding group contains only a single in- 
dividual. Otherwise, the SDB is still secure after answering the query. 
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Procedure Reconstruct_VS (q, Z, VSs) 
Begin 

l := the set of individuals that are queried by q; 
if (I c Z) then /*all of the queried individuals are accessed in Z*/ 

begin 
Combine the individuals into a new group; 
Create a new V$ which only contains the new group; 
Z = Z \ i ;  

end 
else if (I N Z = ~)  then /*none of the queried individuals are in Z*/ 

begin 
if only the subset of a group is queried then 

split the group; 
if the groups in different VSs are queried together then 

merge these VSs; 
end 

else /*! N Z -~ 0"/  
begin 

Create a new group for the queried individuals taken from Z; 
Add a new column, associated with the new group, to the VS; 
Pad the column with O's. 
Z : Z \ I ;  
if only the subset of a group is queried then 

split the group; 
If the groups in different vss are queried together then 

merge these VSs; 
end 

End 
Fig. 7. Algorithm for reconstructing VSs. 

4. Updates in a dynamic SDB 

The insertion and deletion of  individuals in our scheme is easy. In a dynamic 
SDB, whenever a new individual is inserted into the SDB, the individual is di- 
rectly inserted into the set Z because it is never accessed before. On the other 
hand, when an individual is deleted from the database, it can be removed from 
Z without modifying VSs if it belongs to the set Z. Otherwise, we must consid- 
er two cases. Assume that the deleted individual xi belongs to the group Gj 
which is contained in VSk. In the first case, Gj contains at least one individual, 
excluding xi, that has not yet been deleted. All we have to do is to mark xi as 
deleted. In the second case that all individuals, except xi, contained in Gj have 
been marked as deleted, Gj must be deleted and the corresponding column of  
Gj is considered as a dangling column, which is similar to what we introduced in 
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the enhanced Audit Expert. These dangling columns cannot arbitrarily re- 
moved from VSs. The proposed scheme has some interesting characteristics 
that can help reduce the space requirement of VSs. 

Definition 2. Two groups Gi and Gj are related, if 
(i) G/and Gj were queried in the same query, or 
(ii) there exists another group Gk' such that (a) Gk' and Gi were queried to- 

gether; (b) Gk' and G) are related. 

This is a recursive definition. In condition (ii), we can continue expanding 
the relationship between Gk' and Gj. The recursive expansion is stopped when 
condition (ii) (a) is reached. Thus, Gi, G/, and the expanded groups Gk' are all 
related. 

Theorem 2. Groups are related, i f  and only if  they are contained in the same VS. 

Proof. (=~) Without loss of  generality, assume groups Gi and Gj are related. We 
need to consider two cases with respect to the two conditions of  Definition 2. 
The first case is that Gi and Gj are queried by the same query ~ and they 
originally belong to two different VSs. As a result of  the query ~, these two VSs 
must be merged so that Gi and Gj are contained in the new VS. In the second 
case, assume that Gi was queried together with Gl', Gl' was queried together 
with G~,.. . ,  and Gn' was queried with G/. In the same way as above, we know 
Gg and GI' are in the same VS, GI' and G2' are in the same VS,. . . ,  and Gn' and 
Gj are in the same VS. Thus Gi and Gj are in the same VS. 

( ~ )  We can prove this by a simple induction. 
(i) It is trivial when the VS contains only one group. 
(ii) We hypothesize that all n groups in the VS are related. 
Based on the above hypothesis, we add a new group G,+I to this VS and 

verify whether the n + 1 groups are still related or not. By the operations of  
the VSs, only the following three cases will generate new groups. 

Case I: Creating new VSs and new groups. In this case, the new group G~+I 
is extracted from the set Z and is first queried together with some group G~ in 
the VS, that is, Gn+l must be related to G~. Therefore, Gn+l is related to the oth- 
er n groups. 

Case II: Splitting the group. By the definition of  this operation, the old 
group Gi is split into two groups Gi' and Gn+l. So Gi' and G,+1 are related, 
and as G~ they are also related to the other n - 1 groups in the VS. 

Case III: Merging the VSs. If  G,+I is contained in another VS and merged 
into this VS, by the definition of  this operation, G,+I must be queried together 
with some group Gi in the VS. Therefore, in the merged VS, G,+I is related to 
all other groups. 



144 S.-P. Shieh, C.-T. Lin / Information Sciences 113 (1999) 131 146 

Consequently, all groups in the VS are still related while new groups are 
added to the VS. Thus, we induce that the groups in the same VS must be re- 
lated. [] 

Since the groups in different VSs are unrelated to each other, security anal- 
ysis of  a query can usually be done in a VS rather than all VSs, and the deletion 
of  the groups in a VS will not affect the security analysis of  the groups in the 
other VSs. In the proposed scheme, the reduction of VSs is simple. The extra 
overhead for invoking F I N D I N G _ G A R B A G E  to find garbage columns and 
rows is not needed. The idea can be described in Theorem 3. 

Theorem 3. VSi contains a related set of garbage columns and rows, if and only if 
all groups in VSi are deleted. 

Proof. (=~) Assume that Gj is an undeleted group associated with column cj in 
VS~. By Theorem 1, we can transform the matrix of VSi into a block-diagonal 
matrix 

A O1] 

02 B ' 

where ci is contained in 

E;I  
Obviously, VS,. can be divided into two independent vector spaces VS,.' and 
VS/' for [A] and [B], respectively. This result conflicts with the characteristic 
of  the vector space that all groups of a VS are related. 

( ~ )  It is trivial. I f  all groups belonging to VSi are deleted, all columns of  VSi 
are dangling. Since the columns and rows of VS~ are related, according to The- 
orem 2, they form a related set of  garbage columns and rows. [] 

Because groups in different VSs are unrelated, removing the entire VSi will 
not affect the security analysis of  other VSs. Therefore, by Theorem 3, the size 
of the knowledge space can be reduced by removing the entire VS and its 
groups. Unlike the enhanced Audit Expert, our scheme does not need to ana- 
lyze the related relation between columns and rows in a VS, that is, the F I N D -  
I N G _ G A R B A G E  algorithm in Section 2 is not needed in our scheme. Instead, 
our scheme only need to check whether all groups in a VS are deleted. I f  all 
groups of  a VS are deleted, then the VS and its groups can be removed. Oth- 
erwise, no columns or rows can be removed. It is clear that the proposed 
scheme is more efficient than the enhanced Audit Expert. 
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5. Complexity 

In Chin's scheme, it takes no more than O(KN) steps to check the security of  
the SDB and determine whether a new query vector -~ c K × N KS [13], where 
N is equal to the sum of  the total number of individuals in an SDB (na) and 
that of  the deleted ones (rid). In our scheme, all groups of  individuals are par- 
titioned, and the groups in a partition only corresponds to the columns of a 
VS. The knowledge space is split into v different ki × ni vector spaces VSi, 
where i = 1 , . . . ,  v, }--~i'/'ti ~ U and y ~  ki ~< K. It takes O(ki.ni) steps in our audit 
scheme to check the security of the SDB and determine whether the new query 
vector ~ E VS~. In general, n~ is far smaller than N and k~ is far smaller than K. 
Consider an average case where each group contains u individuals and each 
vector space contains equal number of columns (n) and rows (k). The complex- 
ity of our scheme for checking the security of the SDB becomes O(kn), which 
can also be represented as O ( (K/v)(N/uv)) .  Furthermore, in a dynamic SDB 
where ninety percent of the individuals (na/N = 90%). are deleted and their 
corresponding columns are garbage, the complexity can be further reduced 
to O ((K/lOv)(N/lOuv)).  Comparing with the O(KN) of  Chin's scheme, our 
scheme performs better. 

6. Conclusions 

In the paper, we propose a method to enhance Audit Expert. This method is 
able to resolve the space explosion problem caused by insertion and deletion in 
a dynamic SDB. Our algorithm can detect the garbage columns and rows, and 
thus reduce the knowledge space KS. Furthermore, we propose a new audit 
scheme which is also able to determine the security of an SDB. In this scheme, 
we further reduce the size of  the knowledge space KS and thus save time and 
storage spent on analyzing a new query against the KS. The reduction process 
in the scheme is simpler and more efficient than that in the enhanced Audit Ex- 
pert. The removal of  garbage columns and rows can keep KS small, and speed- 
up the security analysis in a dynamic SDB. 

Our future work is to extend the audit scheme to a large distributed SDB 
system. Extension of  the audit scheme to a distributed environment is not 
easy because the merging of  distributed VSs are difficult to perform. Further 
investigation is needed to explore the relationship between distributed database 
servers. Another interesting research related to this work is regarding to 
the design of a common kernel for secure SDB systems. This study will 
try to combine the audit scheme with database access control mechanisms. 
With the secure common kernel, it is easier to design a secure and efficient 
SDB system. 
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