
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 15, 91-106 (1999)

Estimating and Measuring Covert Channel Bandwidth in
Multilevel Secure Operating Systems

SHIUH-PYNG SHIEH

Department of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan 300, R.O.C.
E-mail: ssp@csie.nctu.edu.tw

Covert channels are illicit means of leaking sensitive or private information
through system global variables that usually are not part of the interpretation of data
objects in the security model. We discovered that some covert channels can be
modeled as finite-state graphs while others cannot. By using various techniques given
in the paper, multiple bits of information can be simultaneously transferred through
single or multiple covert channels. We present methods to determine and estimate
the maximum bandwidths of both finite-state and infinite-state channels, and give the
problems and basic rules for their measurement.

Keywords: covert channel bandwidth, multilevel secure systems, system calls

1. INTRODUCTION

Covert channels present a serious risk to data security in computer systems and
networks. These channels are illicit means of leaking sensitive or private information through
system global variables that usually are not part of the interpretation of data objects in the
security model [6]. As more and more systems link to one another through networks, secu-
rity risks increase exponentially. It is, thus, essential for any multilevel secure operating
systems and their applications to use formal methods of covert-channel analysis for a trusted
computing base. A trusted computing base (TCB) is the part of the machine hardware and
system software of a secure system that enforces the security policy of the model in the
system and whose correctness must be verified. A TCB provides at its interface to users a
set of primitives or system calls which users can invoke and, thus, make use of the system.
These TCB primitives can be used to alter or view the system global variables.

Covert channels can be classified into two types: storage channels and timing chan-
nels [9]. Although fundamentally the same, storage channels and timing channels differ in
the way that information is encoded. In a storage channel, there is a shared global variable
in the system that acts as the medium for information transfer, where a user can potentially

Received October 19, 1996; accepted September 6, 1997
Communicated by Arbee L.P. Chen.
1XENIX(TM) is a registered trademark of Microsoft Inc. UNIX(TM) is a trademark of AT&T Laboratories.
Secure XENIX(TM) was developed by IBM Federal Sector Division for B2-level evaluation and is now
marketed as Trusted XENIX(TM) by Trusted Information Systems Inc. The work of this paper was done
on Secure XENIX, an early version of Trusted XENIX.

2This work was supported in part by the National Science Council, Taiwan, under contract NSC-85-2622-
E-009-006R.

91

92 SHIUH-PYNG SHIEH

change its value by invoking a TCB primitive, and another user can potentially view the
change directly or indirectly. A timing channel requires the ability of co-operativeness to
reference a real-time clock so that the receiver can detect a timing difference that can be used
as the basis for encoding data for information transfer. We will focus on the covert storage
channels in the paper. Unless specified, when we mention covert channels, we mean covert
storage channels.

The National Computer Security Center (NCSC) has developed requirements for
the information rate estimation of covert channels in multilevel secure systems at level B2 or
above [1, 2]. A guideline including those requirements states that covert channels of less
than one bit per second are usually considered acceptable while a rate of more than 100 bits
per second is considered unacceptable. Because of the need to find maximum bandwidths of
covert channels, many researches have been done in the area.

Tsai and Gligor [12] presented a Markov model to simulate the use of covert storage
channels and to compute their maximum bandwidths under different system loads and pro-
gram behaviors. The model was developed based on the assumption that the distributions
of zeros and ones are equal because the maximum capacity of a symmetric discrete
memoryless channel is achieved using input (0’s and 1’s) with equal probability [3]. When its
transition times are approximately equal, it is reasonable for the finite-state channel to have
uniform transition times, which are equal to the mean of its transition times. Thus, the effort
required for estimation can be reduced.

In other cases where the difference between the time required to transmitting a bit of
zero and that required for a bit of one through a covert channel is significant, the above
assumption becomes inadequate. Other coding techniques has been proposed in an attempt
to solve problem. In 1964, Shannon proposed a technique for computing the capacity of
finite-state communication channels with non-uniform transition times [13]. Millen
adapted this technique to finite-state covert channels that use individual channel variables
[10]. However, we will prove in sections 3 and 4 that analysis on individual channel variables
is not sufficient because (1) many channel variables are dependent, and (2) some channels
cannot be modeled as finite-state channels.

This paper is organized as follows. In section 2, we explain the notion of covert
channels. In section 3, we give the concepts of serial aggregation, parallel aggregation and
dependent channel variables, and explain how to model finite-state channels and
compute their bandwidths. In sections 4 and 5, we discuss covert channels that cannot be
modeled as finite-state graphs as well as the important issues for covert channel bandwidth
measurement. Finally, we give the conclusions.

2. NOTION OF COVERT CHANNELS

The notion of covert channels was originally introduced by Lampson in a discussion
of the confinement problem as one kind of communication channel that a service program
should be confined to use [8]. Later, Kemmerer proposed the shared resource matrix
methodology [7], which focused primarily on the discovery of covert channels in a formal or
descriptive top-level design specification of operating system kernels and trusted processes
rather than in source code.

Kemmerer pointed out that the minimum conditions for the existence of a storage
channel are as follows: (1) there must exist a global variable in the system to which both the

ESTIMATING COVERT CHANNEL BANDWIDTH IN OPERATING SYSTEMS 93

sending and the receiving processes have access; (2) there must be a way (usually by
invoking system calls) in which the sending process can alter the value of the global
variable, and the receiving process can detect or observe (view) any change in the global
variable; and (3) there must be a way in which the sending and the receiving processes can
synchronize their operations so that the events of information flow can happen. Denoting
the global variable, the sending and the receiving processes by Var, S and R, respectively, a
storage channel can be graphically represented as shown in Fig. 1.

Fig. 1. Graphical representation of a storage channel.

The earliest work on covert-channel analysis of source code was that of Tsai, Gligor
and Chandersekaran [11]. In their work, a formal method for the identification of potential
covert channels was proposed. They provided a general but concise definition of covert
channels in terms of security models and their interpretation in secure systems. That is,
there is a potential covert channel between two subjects of a secure system if and only if
(1) the two subjects have the potential to communicate with each other in the system and
(2) such communication between the two corresponding subjects in the security model is
not allowed under the non-discretionary security policy. The definition also points out
the difference between potential covert channels and real covert channels that can
actually be exploited by users for information transfer. That is, any communication channels
that satisfy the two conditions above may not necessarily be real covert channels; real-time
scenarios for actual use must be constructed for the potential covert channels.

The reasons why a potential covert channel may not necessarily be a real covert
channel are that: (1) covert-channel analysis is usually performed statically and syntacti-
cally based on design specifications and implementation, and not dynamically at the time
when the channel is actually being used; (2) in general, every covert channel has a condition
associated with it which enables or disables information flows through the channel; and
(3) real-time operation of the system may never make the condition become true and, thus,
will never enable the channel of information flows. The task of determining whether a
potential covert channel is a real channel involves creating a real-time scenario that can
enable the condition. Potential covert channels that do not have such scenarios are not
classified as real communication channels. Since the automated tool that has been
designed and implemented performs static covert-channel analysis of the TCB source code

trusted
software

kernel

S R

var

alter view

Trusted XENIX TCB

94 SHIUH-PYNG SHIEH

of multilevel secure operating systems, such as Trusted XENIX(TM), it can only identify the
set of potential covert channels in these systems [5]. To detect the actual use of a real
channel, the states of the corresponding global variable must be audited [14] .

There are basically two classes of covert storage channels: resource exhaustion and
event count. Resource-exhaustion channels exist wherever system resources are shared
among users at more than one security level. To use a resource-exhaustion channel, the
sending process decides to exhaust or not exhaust a system resource, such as disk space, to
encode a bit of 0 or 1. The receiving process detects the bit by trying to allocate the same
system resource. Depending on whether it can allocate the resource, the receiving process
can determine the value of the bit from the sending process. Basically, a resource-exhaus-
tion channel can only transfer one bit in one transmission. In event-count channels, the
sending process encodes multiple bits by requesting or not requesting a shared system
resource (but not exhausting the resource). By querying the current status of the resource,
either through some facility provided in the system, such as the system call ustat in UNIX
(TM), or by observing the return result of some system call that allocates the resource,
such as the system call fork, the receiving process can detect the bits from the sending
process. Usually, the use of resource-exhaustion channel variables can be modeled as
finite-state channels while that of event-count channel variables cannot. We will discuss
this more in sections 2 and 3.

Some examples of resource-exhaustion and event-count channels in Trusted XENIX
[4] are tabulated in Figs. 2 and 3. In these Fig.s, the left-most column is marked with
system calls and the top row with shared global variables. Entries in the tables indicate

inod file file
space interlock table

open AV aV AV
creat AV aV AV
fork a a aV
wait
ustat
chsize a aV

TCB
Primitive

channel
var

Fig. 2. Examples of resource-exhaustion channels in trusted XENIX.

Process number of number of
ID free inodes free blocks

open A A
creat A A
fork AV
wait a
ustat V V
chsize a A

TCB
Primitive

channel
var

Fig. 3. Examples of event-count channels in trusted XENIX.

ESTIMATING COVERT CHANNEL BANDWIDTH IN OPERATING SYSTEMS 95

whether the system call can alter (A or a) and/or view (V or v) the corresponding global
variable. A capital A in an entry indicates that the system can alter the global variable as a
means of encoding and transferring information through the variable. Similarly, a capital V in
an entry indicates that the system call can view the value of the global variable in order to
detect the information from the sending process. Thus, for any shared global variable, the
set of the system calls that have a capital A and those of those that have a capital V consti-
tute the covert channels via the variable. For example, the system calls creat and open can
be used by the sending and receiving processes to transfer information through the
shared global variable representing the file table in the system. On the other hand, a small a
in an entry means that, although the system call can alter the global variable, the alteration
cannot be used to encode information in the global variable. For example, execution of the
system call fork alters the file table because it increments the file reference count for the
child process. This alteration, however,, is different from that of allocating a file table
entry (allocating a entry requires increasing the file reference count from zero to one)
because there is no way for the receiving process to determine whether the file reference
count is increased; thus, this type of alteration does not comply with the semantics or
scenarios for sending a bit of information. It represents a potential covert channel that is
not real because the scenario for encoding information by executing fork simply does not
exist. The same explanation applies to the entries that have a small v.

Some covert channels can be modeled as finite-state graphs, while others cannot. We
call channels that cannot be modeled as finite-state graphs infinite-state channels. In
general, resource-exhaustion channels can be modeled as finite-state channels while
event-count channels can be modeled as infinite-state channels. We will discuss methods
for bandwidth estimation in the following sections.

3. FINITE-STATE CHANNEL BANDWIDTH

The covert channel scenario defines how the sending process and receiving pro-
cesses leak information. This definition may include a description of the synchronization
methods used by the sender and the receiver, the creation and the initialization of the
objects used by the sender/receiver to leak information, the initialization and resetting of the
covert channel variable and so on. If channels are aggregated serially or in parallel, and
if specific encodings are used, the aggregation and encoding methods can be defined.

To compute the maximum bandwidth of covert channels, we must consider both
individual channels and aggregated channels. Storage channels can be parallel-aggregated,
serial-aggregated, or a combination of both. Storage channels can be serial-aggregated
if a process can invoke primitive operations to alter the channel variables without
introducing additional context switches. When channels can be serial-aggregated, the
aggregate bandwidth will be higher than that of any one of the individual channels. The
improvement is significant when the sum of the time for alteration and viewing is much
smaller than the context switch time [12].

Storage channels can be parallel-aggregated in a uniprocessor system whenever
multiple shared covert channel variables can be altered or viewed by a single primitive
operation. This means that a primitive may send or receive multiple bits through multiple
channel variables. For example, in a single invocation, the primitive creat in Fig. 4 can
simultaneously alter and view three channel variables: inode space, file interlock and file

96 SHIUH-PYNG SHIEH

table. The information encoded in these shared covert channel variables can be aggregated
to transmit additional information. It is clear that the maximum bandwidth of a parallel-
aggregated channel cannot be greater than the sum of the bandwidths of each of the indi-
vidual channels.

In most UNIX system cases, the shared global variables of a parallel-aggregated
channel are dependent. A channel variable is dependent on another variable if alteration or
viewing of the former cannot be performed unless that the latter is successfully completed.
For example, the control flow of creat in Fig. 4 shows that creat cannot alter or view
file-interlock or file-table variables unless it can alter or view inode-space variables
successfully. Furthermore, when a variable is dependent on another variable, a no-exception
of the latter can be inferred from the exception of the former. For example, when a file-table
exception [ENFILE] is reported, the user can infer that neither the file-interlock
exception [ETXTBSY] nor the inode-space exception [ENOSPC] prevail. Fig. 5 summarizes
the relations. The left-most column of Fig. 5 includes error or no-error return of primitive
creat while the top row with channel variables. A ‘0’ in an entry indicates that the user can
infer a no-exception of a variable from an error or no-error return of the primitive creat. A ‘1’
in an entry indicates that the user receives an exception of a variable from an error return
of the primitive creat. A ‘X’ in an entry indicates that the user cannot infer the value of a
variable from an error return.

Alter or view inode – space variable

alter or view file – interlock variable

alter or view file – table variable

Fig. 4. Fragment of control flow of “creat”.

inode file– file
space interlock table

no – error
return 0 0 0
error: file – table
[ENFILE] 0 0 1
error: file – inter
[ETXTBSY] 0 1 X
error : file – table
[ENOSPC] 1 X X

infer
return
value:

Fig. 5. Inference from an error and no – error return of “creat”.

ESTIMATING COVERT CHANNEL BANDWIDTH IN OPERATING SYSTEMS 97

As an example of simultaneous use of dependent covert channel variables, suppose
that a single primitive can view channel variables V1, V2 and V3. Also, suppose that the
flow of control within this primitive is sequential; V1 is accessed before V2, and V2 is
accessed before V3. The use of the three channels can be represented a four-state graph, as
shown in Fig. 6. In this graph, nodes represent the states of the three variables; an edge
indicates a state transition after an invocation of a viewing primitive, and the values associ-
ated with each edge are the coded message and elapsed time of this transition. Thus, the
elapsed time Tij for transition from state i to state j equals 2Tcs + Taij + Tvij + Tenvij, where Tcs is the
context switch time; Taij is the elapse time of a altering primitive; Tvij is the elapse time of a
viewing primitive; Tenvij is the environment setup time; i and j vary from 1 to 4. When
allocating the CPU to another process, the kernel performs a context switch from the current
process to a new process. For example, during a transition from state (N, N, N) to state
(N, F, X) in Fig. 6, a receiver receives the coded message 01x with elapsed time T1,4.

Fig. 6. A four-state graph for a parallel-aggregated covert channel using dependent variables V1, V2,
V3.

The maximum transmission rate through a channel is defined as the channel capacity:

ttNC i /))((loglim 2
t ∞→

= , (1)

98 SHIUH-PYNG SHIEH

where Ni(t) is the number of possible symbol sequences of the total time t beginning at state
i. In general, Ni(t) obeys the difference equation:

∑ −=
j

ijji TtNtN)()(, (2)

where i and j vary from 1 to n, and Tij = 2Tcs + Taij + Tvij + Tenvij is the time taken by a transition
from state i to j. To determine the capacity of a channel, it is only necessary to find the
asymptotic upper limit of

Ni(t) = Aixt.

Substituting this solution into Eq. 2, the system of equations is obtained:

∑= −

j

Tt
j

t
i

ijxAxA ,

This system of equations can be expressed in matrix form as (P – I)A = 0, where P is a
matrix of the negative powers of x. Since P – I is singular, its determinant Det(P – I) = 0.
Thus, Eq.1 implies

xtxAC t
i

t
22 log/)(loglim ==

∞→
.

The channel capacity C is calculated from the largest root of the system of
equations.

As the number of states n increases, the size of the n × n matrix (P – I) increases by an
order of n2. Thus, solving n simultaneous equations becomes a complex task. To find a
simple solution, the following assumptions are made:∀ i, j, i, j = 1, ..., n, Taij = Ta, Tvij = Tv

and Tenvij = Tenv. Let T = 2Tcs + Ta + Tv + Tenv; thus, Tij = 2Tcs + Ta + Tv + Tenv = T. Therefore, we
have

0)1()1(

1

1

1

)(1T =−−=

−

−

−

=− −−

−−−

−

−

−−

−−−

Tn

TTT

T

TT

TTT

nx

xxx

x

x

xx

xxx

IPDet

OM

O

M

LL

TnxC /loglog 22 ==⇒

Because n = N+1, where N is the number of variables viewed by a primitive in which
the flow of control is sequential, the maximum transmission rate of a parallel-aggregated,
sequential-dependent channel is:

)2/()1(log2 envvacs TTTTNC ++++= . .

ESTIMATING COVERT CHANNEL BANDWIDTH IN OPERATING SYSTEMS 99

Taking advantage of the dependent relations among channel variables shown in Fig.
5, we can encode messages as in Fig. 7. The original message 00, 01, 10 and 11 can be coded
as the message 000, 001, 01x and 1xx. The transmission rate of the parallel-aggregated, depen-
dent channel shown Fig. 7 is twice that of an individual channel. Intuitively, it can be
concluded that the maximum transmission rate of a finite-state channel is affected signifi-
cantly by two factors. First, the time for altering and viewing a channel variable should be
minimized. Second, the altering (viewing) primitive should alter (view) as many variables as
possible. On the other hand, finding the maximum bandwidth of a infinite-state channel is a
different issue. We will discuss this in the next section.

Original Message Coded Message
00 000
01 001
10 01
11 1

Fig. 7. Message encoded through a parallel – aggregated, dependent channel.

4. INFINITE-STATE CHANNEL BANDWIDTH

In general, event-count channels cannot be considered as finite-state channels. In an
event-count channel, the sending process may change the value of the variable by zero, one
or many to encode information. Because the change of the variable value may be any integer
ranging from 0 to the system’s limit, the event-count channels cannot be modeled as
finite-state channels. We refer to them as infinite-state channels. The process-identifier
event-count channel is one channel of this type. When a new process is created, the
process identifier is generated by incrementing the previous process identifier. The sending
process may create a child process and obtain a new process identifier. The receiving
process may detect it by creating two successive processes to see if the two process
identifiers are represented by consecutive numbers. The sending process makes several
“ fork” kernel calls, and the receiving process obtains the difference between the process
identifiers (PIDs). The receiver can choose an appropriate threshold value for the PIDs to
decode the information he has received from the sender. If the threshold is chosen
appropriately, the transmission noise can be reduced to a negligible value. In an attempt to
find the maximum bandwidth, it is appropriate to neglect the noise because the noise can
only reduce the bandwidth.

We herein propose another encoding technique which can determine the maximum
bandwidth of event-count, infinite-state channels. We take advantage of the multiple states
to transfer multiple bits during each transmission. For example, the original messages which
are three bits in size are converted to coded messages as shown in Fig. 8. A coded
message can be transmitted in one instead of three transmissions. Intuitively, the more bits
coded in one transmission, the higher the bandwidth we should get when these coded
messages are equally distributed. However, the time needed for an infinite-state channel
to encode and transmit n bits in one transmission, Tinfinite-state, is equal to (2n – 1)Tincrement + Tr

+ 2TCS + Tenv, where Tincrement is the time required to increment the variable. The sending

100 SHIUH-PYNG SHIEH

time, (2n – 1)Tincrement, may increase exponentially proportional to the number of bits coded
and transmitted. Thus, we should have a optimal solution. Let us compare the bandwidth of
an infinite-state channel, in which the messages are coded, with that of the same type of
channel in which messages are not coded. In the uncoded case, only a bit of 0 or 1 is
transmitted in one transmission; therefore, we can model the event count channel as a
two-state graph in which a user can choose to increment or not increment the event-count
variable by one. Thus, Ts is equal to either 0 or Tincrement. In general, the sum of Tr, 2 TCS

and Tenv is far greater than TS and, thus, dominates the state-transition time. Hence, the
state-transition times for the two-state graph are approximately equal. Gallager has
shown that the maximum bandwidth can be achieved when both the distributions of both
0’s and 1’s are equal and the state-transition times are equal [3]. It is reasonable to let Ts
equal Tincrement/2. Thus, the time needed for a two-state channel to transmit n bits, Ttwo-state, is
equal to n(Tincrement/2 + Tr + 2 TCS + Tenv).

Let f(n) = Ttwo-state / Tinfinite-state and

2

)2(

/T

TTT
m

increment

envCSr ++= . We obtain

22

)1(
)(

12 -+
+

=
+m

nm
nf .

Fig. 9 demostrates the relation between n and f(n) when m is equal to 100 and 1000,
respectively. Apparently, when f ’ (n) = 0, f(n) is optimal. We get

() () () 0
12

22

22

1
 1

21

1

1
=

−+
−

−+
+=

+

+

+ n

n

n
'

m

lnn

m
mnf .

Thus,

m = 2n+1 (n ln2 – 1) + 2.

When an m is given, the value of n that provides the maximum bandwidth of a infinite-
state, event-count channel exists and can be determined. Their relation is shown in Fig. 10.
We can conclude from the results shown in Fig. 10 that more bits should be coded and
transferred in one transmission when m gets larger.

Original Message Coded Message
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Fig. 8. Message encoded through an infinite – sate channel “process – ID”.

ESTIMATING COVERT CHANNEL BANDWIDTH IN OPERATING SYSTEMS 101

The accuracy of bandwidth estimation depends on the measurement of the
primitive execution times. On the other hand, bandwidth estimation results are needed to
perform measurement. We will discuss their relation ship in the next section.

5. BANDWIDTH MEASUREMENT

Little research to date has been able to measure covert channel bandwidths with
much success. This is because (1) the execution time of primitives cannot be accurately
measured, and (2) it is very difficult and complicated to construct the scenarios for the

Fig. 9. Bandwidth improvement rate f(n) with respect to the number of bits coded and transferred in
one transmission when m = 100 and m = 1000, respectively.

Fig. 10. Optimal n that can achieve the maximum bandwidth when given an m.

102 SHIUH-PYNG SHIEH

actual use of covert channels. Covert-Channel bandwidth measurement is intended to
discover the actual maximum bandwidth of each channel. In order to achieve this goal,
three basic rules need to be followed: (1) the time needed for a primitive to view a variable
with either error or no-error return should be known; (2) only the fastest pair of TCB
primitives that alter and view each covert-channel variable should be chosen for testing; and
(3) the chosen alteration primitives and viewing primitive should be able to cooperate to
transmit information. Usually, if a primitive spends the least time viewing a variable with a
no-error return, it also spends the least time viewing one with an error return. In other cases,
including finite-state and infinite-state channels, we need the help from the estimation
results to select primitives. If the primitives are appropriately selected, the actual maximum
transmission rate can be measured.

The use of TCB primitives for covert-channel transmission of information can be both
system-state (environment) and call-argument dependent. Therefore, the fastest primitive of
a covert channel may not be chosen for data transmission. For example, the primitive creat
can alter (i.e., decrement) the total number free inodes (nfi) only if the object to be created
does not exist. If the object exists, creat has no effect on nfi. In addition, the primitive creat
can be used to alter (i.e., increment) the total number of free blocks (nfb) in the system if
the file being created currently exists. That is, if the file exists, creat truncates the file and,
as a result, increments nfb. Otherwise, creat has no effect on nfb. On the other hand, the
disk-block-space is also affected by this condition. Furthermore, alteration of disk-block-
space channel, and of the nfi and nfb channel, and of the nfi and nfb channels by the
primitive creat is determined by the file system specified in the argument of the creat
invocation.

Many other primitives exist which are both system-state (environment) and call-
argument dependent. Consider again a channel that modulates the nfb and the disk-block-
space channel. The primitive chsize can be used to alter these channel variables (i.e.,
deallocate memory and increase the total number of free blocks) only if the file on which it is
applied exists, and only if its argument indicates file shrinkage. When used to expand the
size of an existing file, primitive chsize does not alter the channel variables but merely
changes the ip – >i_size field of the inode. Therefore, chsize cannot be selected for both
nfb channel maximum bandwidth estimation and measurement though the execution time
of chsize is shortest when it is used to expand the size of a file (see Fig. 11).

It should be noted that in many cases of resource-exhaustion channels, the test pro-
gram does not leak any string of 0/1 bits. This is because whenever one of these resources
are exhausted, the system performance deteriorates to such an extent that no information can
possibly be transmitted within one second. In such cases, it is sufficient to measure the
elapsed time from the beginning of the covert-channel primitive invocation until the re-
source-exhaustion error is returned to determine the upper bound of the achievable
bandwidth.

According to the results of experiments, we conclude that the measured maximum
bandwidth is lower than the estimated maximum bandwidth for two reasons: first, degrada-
tion may be caused by additional user load; second, the channel may have noise which is
introduced by a process not involved in communication.

Unconfined processes may introduce noise and, thus, lead to false detection. To
minimize false detection when covert channels are used, the noise must be removed during
audit-trail analysis. The DoD guideline on covert channels [1] suggests that covert chan-
nels exceeding a threshold of 0.1 bit per second should be audited. This audit capability

ESTIMATING COVERT CHANNEL BANDWIDTH IN OPERATING SYSTEMS 103

UNIX primitives execution time (ms)
chsize (expand) 0.4
chsize (shrink) 420

close 0.2
creat 30
exec 60
exit 10
fork 2.5
link 46

open (existing) 12
open (non-existing) 30

read 1
rmdir (non-empty) 3020

rmdir (empty) 180
unlink 22
ustat 0.4
write 0.72

Fig. 11. The execution time for a subset of trusted XENIX primitives.

provides the system administration with a means of detecting a significant compromise. In
order to compare the bandwidth with the threshold, we need a method that can be used to
measure the information rate from a sequence of observed data.

Let us consider the probability that a digit will appear again, which depends on past
history. For example, a new digit is likely to be equal to 0 again, given that it has been equal
to 0 in recorded history. We will analyze the entropy of an observed code and determine its
information rate [14]. Let { }1,0,,,, n21 ∈iXXXX K , be independent and identically
distributed (i.i.d.) Bernoulli random variables. Assume that the code is a Bernoulli(θ)
process with an unknown parameter ()0== iXPrθ , which is uniformly distributed on the
unit interval. The probability ()11,...,, XXXP nn

k
n − of k selection of ‘0’ in n positions is

() θ∫ θ−θ
−

d
kn k

 0 1 . Given ()11,...,, XXXP nn
k

n − , we can calculate the posterior probability
that the (n+1)-th digit will be ‘0’ again:

()111
1

1 ,...,,|0 XXXXP nnn
k

n −+
+

+ =

()
()12

121
1

1 ,0

,X,...,XXP

X,...,X|XXP

n
k

n

nn
k

n == +
+

+

∫ −
∫ −

= −

−+

1
0

1
0

1

d)1(

d)1(

θθθ
θθθ

knk

knk

.
2

1

+
+=

n

k

On the other hand, the posterior probability that the (n+1)-th digit will be ‘1’ is

() .
2

1
,...,,|1 111

1
1 +

+−== −+
+

+ n

kn
XXXXP nnn

k
n

104 SHIUH-PYNG SHIEH

Let P0 and P1 represent ()111
1

1 ,...,,|0 XXXXP nnn
k

n −+
+

+ = and 1
1
+

+
k

nP (1+nX = 1|Xn, Xn–1, …, X1),
respectively. Thus, the entropy is equal to

()111
1k
1 ,...,,| XXXXH nnnn −+

+
+

() ()111
1

1111
1

1 ,...,,|0log,...,,|0 XXXXPXXXXP nnn
k

nnnn
k

n −+
+

+−+
+

+ ==−=

() ()111
1

1111
1

1 ,...,,|1log,...,,|1 XXXXPXXXXP nnn
k

nnnn
k

n −+
+

+−+
+

+ ==−

.
2

1
log

2

1

2

1
log

2

1

+
+−

+
+−−

+
+

+
+−=

n

kn

n

kn

n

k

n

k

The entropy is highest when k is equal to n/2. This indicates that the higher the
randomness and uncertainty is, the higher the information rate is. If the time needed to
transmit a ‘0’ and a ‘1’, respectively, are different, in order to yield the maximum
information rate (that is, the channel capacity) through this channel, zeros and ones are not
sent with the same frequency. Assume that t0 is the minimum time needed to transmit a bit
of ‘0’, and that t1 is the minimum time needed to transmit a bit of ‘1’. The information rate
of a channel C is equal to () tXXXXH nnn

k
n /,...,,| 111

1
1 −+

+
+ , where t is the time needed to

transmit one bit. Thus, the information rate of a channel is

()
1100

111
1
1 ,...,,|

tPtP

XXXXH
C nnn

k
n

+
= −+

+
+

.

2

1

2

1
2

1
log

2

1

2

1
log

2

1

10 t
n

kn
t

n

k
n

kn

n

kn

n

k

n

k

+
+−+

+
+

+
+−

+
+−+

+
+

+
+

−=

When dC/dk=0, we can derive the k that gives the channel capacity Cmax. That is,

.0
2

1
log)2(

2

1
log2

0

1 =
+

+−+−
+
++

n

kn

t

nt

n

k
n

For a given set of n, t0, and t1, we can uniquely determine the k that gives the channel
capacity.

Unconfined processes may introduce noise into a channel. In this case, the random-
ness and uncertainty of the code sequence is generally low; that is, its information rate is
low. The measured information rate B can be calculated as follows:

()
T

,...,X,X|XXnH
B nnn

k
n 111

1
1 −+

+
+= ,

where T is the total elapse time for transmitting an observed data sequence of length n.
If B is greater than the threshold of 0.1 bit/sec, this transmission should be reported to the
auditor. Otherwise, this transmission can be classified as noise.

ESTIMATING COVERT CHANNEL BANDWIDTH IN OPERATING SYSTEMS 105

6. CONCLUSIONS

Some covert channels can be modeled as finite-state graphs while others cannot. In
this paper, we have proposed various coding techniques for determining the actual use of
both finite-state and infinite-state covert channels to achieve maximum bandwidth. We
have also presented methods for determining and estimating the maximum bandwidths of
both types of channels. In order to resolve the fundamental difficulties of covert channel
bandwidth measurement, we have provided basic rules which can help system administra-
tors to ease and speedup the entire measurement process. Results of our analysis and
experiments indicate that the methods proposed here are adequate.

REFERENCES

1. Trusted Computer System Evaluation Criteria, DoD STD-5200.28, 1985.
2. A Guide to Understanding Covert Channel Analysis of Trusted Systems, NCSC-

TG-030, 1993.
3. R. G. Gallager, Information Theory and Reliable Communication, John Wiley, 1968.
4. V. D. Gligor, C. S. Chandersekaran, S. Chapman, L. Dotterer, M.S. Hecht and W.-D. Jiang,

“Design and implementation of secure XENIX,” IEEE Transactions on Software
Engineering, Vol. 13, No. 2, 1987, pp. 208-221.

5. J. S. He, “An automated tool for the identification of covert storage channels,” in
Proceedings of the IEEE Workshop on Computer Security Foundations, 1990.

6. J. C. Huskamp, “Covert communication channels in timesharing systems,” Technical
Report UCB-CS-78-02, Ph.D. Thesis, University of California, 1978.

7. R. A. Kemmerer, “Shared resource matrix methodology: An approach to identifying
storage and timing channels,” ACM Transactions on Computer Systems, Vol. 1, No.
3, 1983, pp. 256-277.

8. B. Lampson, “A note on the confinement problem,” Communication of the ACM, Vol. 16,
No. 10, 1973, pp. 613-615.

9. S. B. Lipner, “A comment on the confinement problem,” ACM Operating System
Review, Vol. 9, No. 5, 1975, pp. 192-196.

10. J. K. Millen, “Finite-state noiseless covert channels,” in Proceedings of the IEEE
Workshop on Computer Security Foundations, 1989, pp. 81-86.

11. C. R. Tsai, V. D. Gligor and C. S. Chandersekaran, “A formal method for the
identification of covert storage channels in source code,” IEEE Transactions on
Software Engineering, Vol. 16, No. 6, 1991, pp. 581-592.

12. C. R. Tsai, V. D. Gligor, “A bandwidth computation model for covert storage channels
and its applications,” in Proceedings of the IEEE Symposium on Security and
Privacy, 1988, pp. 108-121.

13. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, The
University of Illinois Press, Urbana, Illinois, 1964.

14. S. P. Shieh, V. G. Gligor, “Detecting Illict leakage of information in operating systems,”
Journal of Computer Security, Vol. 4, No. 23, 1997, pp. 123-148.

106 SHIUH-PYNG SHIEH

Shiuh-Pyng Shieh received the M.S. and Ph.
D. degrees in electrical engineering from the University of
Maryland, College Park, in 1986 and 1991, respectively. He is
currently the Director of the Computer Center and a Professor
with the Department of Computer Science and Information
Engineering, National Chiao Tung University. From 1988 to
1991, he participated in the design and implementation of the B2
Secure XENIX for IBM, Federal Sector Division, Gaithersburg,
Maryland, USA. He is also the designer of SNP (Secure Network

Protocols). Since 1994 he has been a consultant for the Computer and Communications
Laboratory, Industrial Technology Research Institute, Taiwan, in the area of network secu-
rity and distributed operating systems. He is also a consultant for the National Security
Bureau, Taiwan. Dr. Shieh has been on the organizing committees of a number of conferences,
such as the International Computer Symposium, and the International Conference on Parallel
and Distributed Systems. Recently, he is the general chair of 1998 Network Security Tech-
nology Workshop, the program chair of 1999 Mobile Computing Conference and 1997 Infor-
mation Security Conference (INFOSEC’97). His research interests include internetworking,
distributed systems, and network security.

