Optimal Assignment of MobiIeAgentsfgr Software
Authorization and Protection

Shiuh-Pyng Shieh, Chern-Tang Lin, Shianyow Wu
Department of Computer Science and Information Engineering
Nationd Chiao Tung University
Hsinchu, Taiwan 30010

ABSTRACT

In this paper, a modd for software authorization and protection in mobile code
systems is proposed. In the modd, a software is partitioned into objects, caled mobile
agents, and the privileges to access these agents are separated and distributed to the user’s
locd system and a number of trusted servers called trusted computational proxies. The
execution of a program (software) is conducted by cooperation of the agents and the
proxies that contain them. Two agents are dependent if there is message passing between
them. To reduce the risk of software being attacked, dependent agents are distributed to
different proxies. In thisway, if a proxy is compromised, minimal information of the software
will be disclosed. Methods for assigning agents to proxies are dso proposed to minimize,
under the security congraints, computation load of the proxies as wel as communication

load between the user’ sloca system and proxies.
K eywords. Software protection, mobile code, remote execution, Java language, proxy.

1. INTRODUCTION
The rapid development of network and advanced technologies enable new software
capabilities and wide market interest, but software piracy, such as the unauthorized copying,

use, or distribution of software products, is still a serious and tough problem to cope with.

" Thiswork was supported in part by the National Science Council, Taiwan under contract NSC
86-2622-E-009-007R.

Although various software protection schemes, have been proposed, software piracy ill
causes mgjor losses to software vendors since some protection schemes can be eadly

cracked by amalicious user and some require additional costs for users [Curtis94] [Neffo4]

[Dono94] [Dakin95] [Voelk86]
[Wilson97].
dify th
authentication Software
software process ‘l Authentication Process
\
cracker accessthe — *
main program
directly
Main Program

» Authentication process may check key disks, parallel-port locks,
or custom serial-number validations

Figure 1 Common software protection schemes

Most of these software protection schemes embed access control mechanisms in the
program code, and a user has to pass these authentication processes before using the
software. The process may require serial number of the corresponding user, password from
the manual, or checking the source where the software locates (CD or floppy disk, for
example). Unfortunately, these authentication processes have been cracked by many
crackers, shown as Figure 1. The difficulty of cracking such a protection scheme depends
on how complex this part of code is written. For example, some software vendors put
checksum vaues for the authentication process in the software. If someone tries to modify
the code to bypass the authentication process, an error may be found later and the execution
will be terminated. This just increases the time to crack the software , however, it cannot

prevent unauthorized use.

Recent advance of network technology alows network users to access the Internet in
amore effective way. The growing importance of Internet has stimulated research on a new
generation of programming languages. Recently, mobile code languages
[Ghezzi97][Goding96][Gray95] have been proposed as a technologica answer to the
problem. These languages view the network and its resources as a globa environment in
which computations take place [Bic96][Carz97] [Cian97]. A mobile-code-based software
is patitioned into objects cdled mobile agents. For example, in mid-1995, Sun
Microsystems announced the Java language [Goding96]. The Java language is a Smple,
object-oriented, portable, and robust language that supports mobile codes. Java augments
the present WWW capabilities by dynamicaly downloading the mobile agents, cdled
gppletsin Java, and running these agents locally [Sun964).

The development of mohile code technol ogies changes the style of software usage. The
mobility and cross-platform characteristics of mobile agents dlow software renta on the
network. Users can download the corresponding agent of software across the network and
run it dynamicaly when they want to execute some functions of the software. They will no
longer be asked to purchase the entire software when they just need to use part of the
features. Revidon for software in the environment becomes smple. On the other hand,
software developers can dways provide the newest software for users, and can know how
many times a program has been downloaded by a user. However, illicit dissemingtion of
software appears to be more serious on the network. It is desirable to control the access
that only authorized users can download and execute a program. When a user wants to
download a program from the service provider, the conditional access can be achieved by
appropriately setting download permissions. But the service provider has no control over the
mobile agents that have been digtributed to users. That is, the new style of software usage on
the network causes more serious software-piracy problem, and, smilarly, common software

protection schemes that relies on the authentication process within the software itsdf cannot

effectively prevent the software from being cracked by a smart cracker.

To ded with the problem of software piracy on the network, not only the software
itsdf but dso the environment associated with the software must be consdered. The
compromised verson of software may be harmful to users executing it, Snce it may contain
a Trojan Horse or virus [Bark89][Dean96] [Rubin95]. The malicious code that contains a
Trojan Horse or virus accessng user’ s system resources such as the file system, the CPU,
the network, and the graphics display may cause unpredictable effects, such as steding
user’ s privacy or dameging resources in user environment. Besides Trojan horse and virus, a
user who modifies the code to deviate from the prescribed execution may cause more
problems to other parties on the network. For example, a user may chest in a multi- player
game on the network if he has the ability to modify the prescribed code of the software.
Therefore, not only mobile-code-based softwares require a good software authorization and
protection model to prevent software piracy, but aso users need a secure environment
againg the attacks from maicious mobile agents.

To didribute the software in a secure manner that prevents users loca systems from
attacks of malicioudy modified agents, digita sgnaure can be agpplied. Many code
digribution mechanisms have been proposed to enforce trusted distribution of software
[Barker89)[Harn92] [Rubin95][Zhang97]. In JDK 1.1 (Java Development Toolkit)
[Sun96b][Gong97], the code signing feature is provided and the user who downloads the
agent can identifying the sender by verifying the sgnature. If the agent is not trusted,
execution will be regtricted in a sandbox with only limited system resource provided.

Another Java-based mobile agent, called aglet, was developed at IBM’ s Tokyo
Research Laboratory [Venners97]. Aglets are able to automaticaly vidt aglet-enable hosts,
execute on them, and communicate with other aglets in the computer network. Like other
mobile agents, aglets are a potentia threat to a system and they are also exposed to threats

by ther hosting sysem. Karjoth et d. thus proposed a security mode for the aglets

development environment [Karjoth97]. But, like other literatures which discuss the security
issues of mobile agents, their security moded currently only focus on protection of the host
agang aglets. That is, the application (or software) composed of aglets will suffer from the
problems of software piracy from malicious hogts (users), such as unauthorized use or illicit
dissemination.

In this paper, we will propose a software authorization and protection mode which
emphasizes the protection for mobile-code-based software (or the software venders) to
prevent the attacks of hods (users). To achieve flexible and globa security for the rapid
growing network environment, the protection of the software property in the network
environment has been taken into consderation. In the mode, the privileges to access the
agents of a program are separated and distributed to the user’ s loca system and a number
of trusted servers called trusted computational proxies. Dependent agents are distributed to
different proxies to minimize the information disclosure in case a proxy is compromised. In
the environment, methods for assgning agents are aso proposed to minimize, under the
security congtraint, computation load of the proxies as well as communication load between
the user and proxies.

This paper is organized as follows. In Section 2, our proposed modd for software
authorization and protection is presented, which is based on the concept of separation of
execution privileges. In Section 3, amodd for software partitioning to achieve protection in
this environment is presented, and related issues for achieving better performance and
security will be discussed. Findly, we give the conclusonsin Section 4.

2. THE PROPOSED AUTHORIZATION AND PROTECTION MODEL

In mobile code systems, a program (software) is composed of a number of agents. An
agent can be downloaded dynamicaly from the remote machine and executed on the local
machine, and a job can be processed by the cooperation of these agents. In the section, an

authorization and protection mode is proposed to enhance the security and protection of

mobile codes by ddegating some criticd execution services to one or more trusted and
protected proxies.
21 SYSTEM M ODEL OVERVIEW

The execution of a program can be consdered to include three parts. incoming
messages, transformation processes, and outgoing messages. An agent participates in the
transformation process for a message if the agent sends or receives the message. If some
critical agents are removed from a program, execution of the program cannot proceed.

With the RMI (Remote Method Invocation) technology for Java language that enables
cooperating of computers on the network, we proposed a modd that protects software with
the help of trusted, protected computational proxy servers, instead of tamper-resistant
hardware devices inddled in the user’ s environment. In this modd, agents of the software is
partitioned into two types, general and privileged agents. The users can acquire only generd
agents. And the privileged agents are forced to be executed in a protected environment, that

IS, the trusted computation proxy.

Global view of

Trusted = o software
Computational P 4 t P 34
Proxy | Agent controlling process|
A
| |
User Agent controlling process

Shth o

[common agent
privileged agent

Figure 2 The proposed protection model

The trusted computationa proxy provides computation services for privileged agents,

as shown in Figure 2. Only a trusted proxy has the capability to get privileged agents and

execute them. The proxy executes the agents on behdf of an authorized user and returns the

result to the user. In this way, an unauthorized user cannot acquire the results of privileged

agents, and therefore benefit little from the software. A program may consst of many

proxies, and each proxy executes only a subset of the privileged agents. Thus, a

compromised proxy will not legk dl privileged agents. In the proposed model, agents to be

downloaded are encrypted by agent keys, and the agent keys for each agent are different.

These keys are only available to trusted proxies or authorized users. The model conssts of

SX mMgor components.

1

2.

Software Vendor: The company who developed the software.

Certification Authority: The party who signs and issues the certificate containing
the user’ s public key.

Software Authentication Center: An accredited organization that authenticates the
software developed by software vendors, and dgning legitimate parts of the
software.

Agent Server: The server who stores agents provided by software vendors. When
a host wants to execute an agent, it first downloads the agent from an agent
server.

Trusted Computationa Proxy: The server that provides computationa services of
privileged agents for users.

User: The user who uses the software.

22LICENSESFOR THE SOFTWARE

In our model, there are two kinds of licenses, publication license and execution license.

The publication license gives the right for software vendor to digtribute an agent and the

execution license gives the right for user or proxy to download and execute an agent. Note

that this paper does not clearly describe the detalled format of licenses snce the

implementation issue is out of the scope of the paper.

A. PUBLICATION LICENSE

In our environment, secure digtribution of agentsis achieved by the publication licenses.
For each agent, there is a publication license associated with it. The publication license is
issued and sgned by software authentication center, and every agent provided by a software
vendor must have alegd publication license.

A publication license condgts of

1. Serid number

2. Software vendor informetion

3. Software authentication center information

4. Agentinformation (1D, verson)

5. Messge digest of the agent

6. Issuing and expiration time

The license is Signed by the center’ s private key. When a user or proxy downloads an
agent from the agent server, it verifies the agent by the center’ s public key, and dso checks
the message digest and expiration time of the agent.

When the software vendor releases a new agent, it firs sends it and the related
information about the agent (for example, specification or source code) to the software
authentication center. The software authentication center checks the agent, and if thereis no
problem with it, the center issues a publication license of this agent and sends back to

software vendor.

B. EXECUTION LICENSE

The user or proxy must get an execution license to execute the corresponding agent.

The execution license is issued and signed by software vendor to prevent an unauthorized
user from forging it.

The execution license cong&ts of:

1. Serid number

2. Execution capabilities for agents of the software

3. Deegation capahilities for agents of the software (For user only)

4. User or proxy’ sinformation

5. Software vendor information

6. Ising and expiraion time

The execution capability of an agent determines whether a user or a proxy can
download the agent. If the user has the execution capability of an agent, he can get some
extra information of the agent from software vendor, for example, agent key or message
digest of the agent, to decrypt and verify the agent. To execute the privileged agents that
have to be executed in the proxies, a user must have the delegation capability for these
agents. That is, the delegation capability determines whether a user can delegate the
execution of an agent, which he cannot execute directly, to the proxy.

The execution and delegation capabilities for a user depends on how many agents the
user has been authorized to use. If the user is interested in only some features of the
software, software vendors can issue the license with the capabilities for only the agents
providing these features.

The rest of the license contains the other basic information, such as the usa’ s certificate
identifying who will execute the agent, the information of the software vendor who produced
the agent, the expiration time of this license, and so on. The information helps the agent
savers to verify the legdity of the execution licenses while the user/proxy requedts to

download agents.

23 USING THE SOFTWARE

The user can purchase the execution license of the software he is interested in from the
software vendor. Once the user received the execution licensed issued by software vendor,
he can begin to use the software. In this section, we describe the related issues when a user

isusing the software.

A. AGENT DOWNLOADING

In mobile code system, agents are dynamicaly downloaded from a remote server and
executed in a locd machine. Agent downloading is necessaxy if there are no previoudy
cached agents in a proxy or user’ s computer. The agent server controls the access to the
agents to be downloaded. The client (proxy or user) sends the request for the agents aong
with his execution license. If the licenseis valid and it conssts the execution capability of the
agent, the request will be accepted. Otherwise it will be denied.

When auser or aproxy received an agent from the agent server, he can decrypt it with
the corresponding agent key. The verification process verifies the vdidity of an agent, which

includes correctness and effectiveness of the downloaded agent.

B. EXECUTION OF THE SOFTWARE

After auser downloads the agents from an agent server, he can begin to execute them.
Since privileged agents are forced to be executed by the proxies, the user has to bind these
agentsfirst before execution. In the binding phase, the user sends his execution license to the
proxy server he wants the execution to be delegated. The user and the proxy mutudly
authenticate execution license of the other. The execution then proceeds by executing the
agents corresponding to the cagpabilities listed in user’ s execution license,

If there are more than one proxy participated in the execution, the user will be required

to explicitly make connections to each of them and authenticate with each other. For the first

10

time using the software, the user requests the software vendor for alist of available proxies.
He then chooses the proxy for computationa service and register himsdf a this proxy.

Regidration for execution licenses will be discussed in the next section.

24 LICENSE REGISTRATION AND REVOCATION

Once an execution license has been issued to a user, the user can use the software with
the capabilities listed in the license. However, sometimes the software vendor may wish to
revoke the license of auser if illega behavior of the user has been found. Moreover, with the
registration and revocation support, it is desirable to record in a license the number of
executions granted to a user. The proxy records the number of executions invoked by the
user, and if it exceeds the limitation recorded in the user’ s execution license, subsequent
execution will be rgected.

Regidration is required for the firg time when a user wants to use the service provided
by a proxy. The execution license will only be vaid for the proxy if there is a corresponding
registry [U ,P,S N]p_ (sgned by the software vendor, where U is the user’ s identity, P
isthe proxy’ sidentity, D is software vendor’ s private key, and S I, is serid number
of the license) in the proxy. When a user wants to delegate the execution to a proxy, the
proxy checks both the user’ s execution license and the registry. The license without a

corresponding registry will be consdered invaid. The registration steps are described as

follows

Step1: A user sends a request dong with his execution license to the software
vendor for regidration a a proxy.

Step 2. The software vendor checks vdidity of the user’ s license. Go to Step 3 if
valid, otherwise stop.

Step 3: The software \endor sends a message [U ,P,S N]DS (sgned by the

11

software vendor) to the new proxy to add user’ srecord at the proxy.

Step 4. The software vendor updates its own registry for the user.

To revoke an execution license of a user in a proxy, the software vendor smply tdlls
the proxy to remove the registry for the user and then removes the registry located at the
software vendor itsdf. Then the user’ s execution license will be revoked because no
registries can be found in the proxy. In addition, the vendor can dso inform the user that the

licenseis revoked.

3. SOFTWARE PARTITIONING

Software partitioning means separating agents such that a user cannot benefit from
holding only a subset of agents of a program. The god is to partition the software in such a
way that a user holding a single agent or a subset of the agents will not be able to get an
acceptable result if acquiring the result requires the help of other agents.

In Figure 3, we compare two different ways of software partitioning. Assume that each
area in the graph represents a code fragment, that is, an agent. The execution of an agent
depends on the execution of adjacent agents, that is, there will be message passing between
the adjacent code fragments. There are two partitions in the grgph, where a light-color area
represents an agent to be executed by a user, and a dark-color area represents an agent to
be executed by a trusted computationd proxy. It is clear that the partitioning on the right of
Figure 3 provides better protection than the patitioning on the left. The method of
partitioning in the left gragph smply cut the program into two haves, where the left haf will be
given to the user and the right half will be given to the proxy. If an authorized user acquires
any hdf of the program, he can Hill execute partid functions of the software and get some
results. On the other hand, the method on the right divides the program into smal pieces,

and digtributed them to the user and proxy server. In case ether one of them is

compromised, an intruder can benefit little from the compromised agents, because many of

the agents he received relies on execution of the other agents.

Poor partitioning Better partitioning

Figure 3 Example of partitioning

The execution of an agent may disclose some information to the user. The more agents
the user can get, the more information may be gained from the user. If the user gets dl the
agents, we can say that the whole software is compromised. However, for two nonadjacent
compromised agents, since they are not directly dependent, the intruder can only acquire
two smd| pieces of information from them, but cannot find the relationship between the two
pieces. However, for two adjacent agents, the intruder can find ther relaionship and merge
the two pieces of information to acquire more information.

3.1 PROPOSED PARTITIONING MODEL

A program in the mobile code system can be represented as an undirected

dependency graph G =(V ,E), where a vertex represents an agent and an edge

represents the dependency between two agents. If an agent may communicate with another

13

agent, they are dependent. For two dependent agents in execution, there will be messages
passing between them.

In the software, we assume that user can get more acceptable result from it if he can
get alarger subset of the connected agents. Giving user two independent agents will provide
better protection than two dependent agents, because the user cannot benefit from two
independent agents directly if they depend on other agents executed in the proxy. Based on
the assumption, we proposed a partitioning model, in which any two agents executed by the

user are independent, as shown in Figure 4.

Software

Figure 4. The proposed partitioning mode

In the scheme, each agent on the user’ s machine depends on the agents executed by
the proxy. The partitioning model consders the security only at the agent level, and the
interna structure of an agent will not be covered in this paper. An agent isabasic dement in
the modd. For a smdl software with only severd agents, a heurigtic partitioning may work
well. However, for a large software composed of many agents, our mode gives a good
protection by partitioning the software into pieces which will be assigned to different

participants to acquire better security. In the assgnment, we consder the following two

14

issues:

1) performance

2) software protection

For the firg issue, we wish to achieve good performance by reducing the
computationa load of the proxy and distributing more agents to the user. Since the proxy
provides the computation services for many users, its load is usudly rather heavy and it may
become a bottleneck. The computation load on the proxy should be an important factor for
the overdl performance. To reduce the computation load on the computation proxy, it is
desirable to digtribute as many agents to the user as possible. On the other hand, for the
second issue, it is desirable to distribute as few agents to the user as possible to reduce the
posshility of software piracy. To balance the two requirements, a possible approach is to
assign as many agents to the user as possible under the condiraint that al agents executed by
the user are independent. Furthermore, if each agent has a different computationa cog, it is
a0 dedrable to find an assgnment that minimizes the computation load on the proxy. Later
in Section 3.3, we will dso take the communication load between any two agents into
condderation, and find the optima assgnment for reducing both computation cost and

communication load.

3.2ASSIGNMENT OF AGENTS

In this section, we will discuss the method for assigning agents to participants, including
the user and the proxy. In the dependency graph for a program, the agents assgned to be
executed by the user is marked number O, and those executed by the proxy are marked
number 1 or greater. Not al agents of the program will be fredly assgned. Some agents may
have specia properties and have to be assigned at specific locations. Before partitioning, we
find this kind of agents and assgned them firs. The geps for the initid assgnment are

described as follows, and an exampleis shown in Figure 5.

15

Sep l: Mark the nodes that have to be placed at specific locations.

Some agents have to be executed at specific locations. For example, some agents
may be designed for reading data from the user’ s keyboard, displaying data to the
user’ s monitor, or reading/writing data from the user’ s hard disk. These agents have to
be executed by the user, and marked number 0. Some agents have to open some
network connections from a proxy (in a firewdl, for example) or reading/writing
something from the proxy’ s file system. These agents should be placed in the proxy,
and marked number 1. In this step, al specid rodes (agents) are marked a number

depending on the location the agents has to be assigned.

Sep 2: The nodes adjacent to nodes with O are marked 1.
Since the agents executed by the user must be independent, al agents adjacent to

agents with number 0 cannot be marked number O again. These agents have to be

marked number 1.
file system
behmd a
Hrewa o 10

/ o/

Step 1 o\o/ Step 2 O\O/

\
7’/2’ ez /w
[e

Fgure 5. An example for initid agent assgnment

16

Here are some examples for thiskind of agentsthat have to be initidly assgned.

User: Reading from keyboard
Reading or writing from user’ shard disk
Digplaying on the monitor
Communicating with network with user’ sidentity
Proxy: Reading or writing from proxy’ sfile sysems
Execution from behind the firewall

Agents conggting of critical codes

In addition, the security concernsis also an important factor for the initid assgnment of
agents. In the network environment, sometimes an agent may invoke some operations on a
specific principle, and the correct execution must be assured. For example, the software
vendor may want to record execution states of the software provided for users. Sometimes
a database can be only accessed by a trusted party. If the execution of the agent is
performed by the user, he may modify the code to deviate from prescribed execution and
creates faulty results. Thus these agents have to be assgned to the proxy to ensure correct

results.

3.3PARTITIONING FOR PERFORMANCE CONSIDERATIONS

If the proxies are trusted and protected, the assgnment of adjacent agents to the same
proxy will not be a problem. Since the unauthorized users cannot access agents in the
proxies, we just need to assgn the nodes in such a way that dl agents in the user are
independent. The assgnment problem is thus reduced to finding the maximum independent
St in a dependency graph. Since each agent usually need different execution time, we assign

aweight to each agent, where an agent with heavy weight imposes more computation cost

17

than an agent with light weight. Since each agent has a different computation cost, the

assignment problem becomes finding the maximum weighted independent set in an arbitrary

graph.

A. Finding Maximum Weighted I ndependent Set

Inagraph G =(V ,E), and each vertex v; has a postive weight wi. Let S to be
the independent et for the grph G if for al v,,v,7 S, vv, i E . The madimum

weighted independent set for the graph G isto maximize W(S) = é_ w . A dique of grgph

s
G=(V,E) isthe stbset C I V, where G(C) is a complete graph. Finding the
maximum weighted independent set in G is equivaent to finding the maximum weghted
diguein G , where amaximum weighted diqueis adigue that the sum of dl of its weighted
verticesis maximdl.

The problem of finding the maximum weighted or unweighted independent st in an
arbitrary undirected graph, has been proven to be NP-hard [Garey79]. The problem is
notorioudy hard even if vertices of the graph are unweighted. For the unweighted case, an
efficient dgorithm for finding maximum independent set has been presented by [Tarjan77],
which takes O(2"?) time. Many heuristic agorithms have been proposed for finding
maximum weighted independent set or maximum weighted clique in an arbitrary graph
[Baas96] [Kopf87] [Pardalos9l] [Xuedd]. Polynomid time agorithms for many other
restricted classes of graphs have aso been proposed. If the graph is a tree, the maximum
weighted independent set can befoundin O(n) [Chen88].

With the dgorithms for finding maximum weghted independent s, the optimd
patitioning for the software that the computation load of the proxy is minimum and agents

executed by user are independent can be found.

18

B. Consdering Both Computation and Communication L oad

Now we consider that the network bandwidth between user and proxy may be limited,
and the computing power of the proxy may be dso limited. We want to partition the
software that gives optimal assgnment of load under such limitations. In the agent
dependency graph, we define each edge to be the network communication loads between
two agents. The communication load is often measured as the average number of messages

in an execution session between two agents, and it is defined to be zero if:

1) the two agents are nonadjacent, or

2) the two agents are adjacent but assigned to the same location.

Then we define communication degree of an agent to be the tota communication load
between the agent and al other adjacent agents. Here are the steps for caculating the

communication degree of an agent.

Step 1: Measure the communication load between any two agents and define it as
weight of the edge in the graph.

Step2: Add the weights of dl incident edges of a node to be its communication
degree, if the adjacent node has not been marked the same number as the

node.

An example of the procedure for caculating the communication degrees of each agent
isgiven in Figure 6. In the graph preceding the arrow, each agent is labeled its computation
load and each edge islabeled its communication load. In the graph following the arrow, each
vertex (agent) v; is labeled the pair (my, n), where my represents computation load of the

agent, and n; represents communication degree of the agent. Since the two dark agents have

19

been initidly marked the same number and assgned to the same host, communication load

of the edge between them is not added to communication degrees of both agents.

(2.5

O
/ o G2

(75 o\ /

GITN (88 (919

(73

(/— @) (4,7)

(6.9

Figure 6. Cdculating communication degree

Condder that the computing power of proxy or the network bandwidth may be limited.

We can formulate the problem for partitioning. First we define some variables that will be

used in the problem.

m;: computation cost of agent v,

M _ ,: total computation cost of all agents

al*l

n;: communication degree of agent v;

N ,: total communication degree of all agents

al-l

P: computing power of the proxy

B: the network bandwidth

The problem for partitioning under different limitations becomes:

1. Minimize the computation cost under limited network bandwidth between
the proxy and user.

Maximize y = é m subject to the condraint that é n £ B, where Sisan

ul's vis
independent set for graph G.
2. Minimize the communication load under limited computing power of the
proxy.

Maximize z= N, - é n, subject to the condraint that é mEM, - P,

ViT S Vii S

where Sis an independent set for graph G.

The independent set S contains the agents that will be executed by the user. The two
problems are equivdent, and we formulate our problem as follows. According to the

description of subsection 3.3(A), the problem is to find the subset S of vertices such that

M(S) = é m is maximum under the condraint é n, £ k, where k is a given upper

vis vis
bound and O£k £ B. Here we present a heuristic method to solve this problem
recursvely. The dgorithm is able to find, under a given network bandwidth congtraint, the

independent set with maximum computation weight for graph G.

Algorithm for finding the independent st with maximum computation weight
Sepl: (1) Set S=AM =0,N =0.
(2 Set §=AM,=0,N,=0.
(3 Set S,=4A,M,=0,N, =0.

Step2: If G A choossavertex i ingrgoh G, otherwise stop.

21

Step 3: For the chosen vertex v, if n, >k or vertex v; isinitiadly assigned 1, goto
Step 5.

Stepd: Set G, =G- {v} - {vetices adjacenttov} and k,=k-n . Find
M,.N, .S, by cdling the dgorithm for grgph G,,. If vertex v; isinitidly
assigned O, go to Step 6.

Step5: Set G, =G-{v} and k, =k . Find M,;,N,,S, by cdling the
dgorithmfor grgph G, .

Step6: If My >M, then M =~ My;+m,N- N,+n,S- S Ev,.

Othewise M = M,N = Nl,S—l %

After executing the heurigtic agorithm, the set S consists of the agents to be assigned to

the user. Note that in the beginning if é n, >k where | is the initidly assgned st of

vil |
independent vertices in G, the process should be stopped because no vaid solution
satisfying the condraint in grgoph G can be found. Furthermore, if Kk is large enough to
support al possble communication between the user and proxy, the partitioning problem is

reduced to finding the independent set with maximum computation weight.

34 PARTITIONING AGENTSAMONG MULTIPLE PROXIES

In the previous section, we investigate the methods for partitioning agents between a
user and a proxy. In the section, we will investigate the partitioning method for the network
environment with multiple proxies, where each proxy may be compromised. To reduce the
risk of software piracy, we assign the agents to the proxies in the way that each proxy gets
independent agents. Thus, the disclosure of software information can be minimized. The
problem of assgning independent agents to each proxy can be formulated as the vertex

coloring problem. We discuss the vertex coloring as follows.

Let G be agraph. A vertex coloring of G assgns colors, usudly denoted by 1, 2,
3, ..., tothe vertices of G, one color per vertex, so that adjacent vertices are assigned
different colors. The minimum number n for which there is an n-coloring of the graph G is
cdled the chromatic number of G andisdenotedby ¢ (G).If ¢ (G)=kwesay that G is
k-chromatic.

The problem of coloring vertices in an undirected graph has been shown to be NP
complete, i.e., no agorithm has yet been proposed to find the optima coloring in polynomid
time [Aho74]. However, there ae a number of coloring agorithms which give
gpproximations to minima coloring. These heurigtic graph coloring agorithms can be used to
find good approximations to the chromatic number of those graphs thet are too large for the
coloring [Clark91]. We will discuss both gpproximate vertex coloring and exact vertex
coloring in the following sections and give the guiddines for partitioning with these

dgorithms.

A. APPROXIMATE PARTITIONING

If there are enough proxies available on the network, we can use the gpproximeate
coloring agorithms for partitioning, which solve the problem in polynomid time. In this
section, we discuss the coloring dgorithms that give gpproximation to minima coloring. One
of the coloring agorithm is the smple sequentid dgorithm [Welsh67]. The dgorithm darts
with any ordering of the vertices of thegraph G, say v,, Vv, ltfirst assgnscolor 1to v,;
then movesto vertex v, and colorsit 1 if it is not adjacent to v, ; otherwise, wlorsit 2.
Proceeding to v, color it 1if it isnot adjacent to v, ; color it 2 if it is adjacent to v, but
not adjacent to v, ; otherwise, color it 3. Proceed in this manner, coloring esch vertex with
the first avallable color that has not been used by any of its adjacent vertices. In the
following, we proposed a new smalest-last sequentia assgning dgorithm to solve the

assigning problem with some verticesinitidly assigned.

23

The Smallest-Last Sequential Assigning Algorithm

Assume that the agents executed by user are assigned color number 0, and agents

executed by proxies are assgned color number greater than O which each color number

represents a proxy. In the initid assgnment, some agents may have been assigned to

designated locations. For the initidly assigned proxies, the color numbers are chosen from 1,

and increasingly. We firgt delete the vertices that initidly assgned number 0 and solve the

reduced subgraph. The smdlest-last sequentid assigning agorithm is described asfollows.

Step 1:

Step 2:

Step 3:

Step 4:

@
2

3

D)
)
3

(4)
Q)

Let U bethe set of verticesinitidly assgned color number O.

Let P be the set of vertices initidly assgned color numbers greater than
0

LeeH =G- U, where H is the subgraph of G with dl verticesin U
deleted

List theverticesof Pas x,,..., X, .

Choose x, tobeavertex of minimum degreein H - P.

For i=n-1n- 2,..,a+1, choose X, to be a vertex of minimum
degreeinthesubgraph H - P - {X,, X, 1. Xoua} -

Lig theverticesof Has X,...., X, .

List thecolorsavailableas1,2,... r.

For dl x, i=1,....a, l&¢ C ={p} where p, is the initidly assgned

color for X .

Fordl x,i=a+1,...nle C ={12,..,r}, whichisthelig of colors that

can color vertex X .

Seti=1.

24

Step 5 Ifi>a,let ¢, bethefirst colorin C, and assgnit to vertex x; .
Step6: Set C,=C,-{c} foreach x; inH, j>i,and x; adjacentto x.
Step7: Set i- i+landgotoStep5if i £n.

Step8: Fori=1,...,n, c; isthecolor assgned to vertex x;.

After executing the dgorithm, the agents can be partitioned such that
1) The user gets an independent set of agents.
2) Agentsin each proxy are independent.

3) Atmost rrﬁx[d(x)]+1 proxies are required, where d(x) is the degree
X

for vertex X .

B. OPTIMAL PARTITIONING

In this section, we discuss the exact vertex coloring, which gives partitioning with
minima number of proxies. A graph can be colored optimaly by coloring with the first color
a maximum independent st M, in G, and then coloring with the second color with
another maximum independent st M, in G, =G - M, and s0 on until al vertices have
been colored. Such kind of coloring agorithms are cdled optima independent colorings
[Chrigtofides/1][Chrigtofides/5]. With the dgorithms for maximum independent set
discussed earlier, we can partition the software and assign them with minimal number of

proxies.

3.5 GUIDELINE FOR PARTITIONING AMONG PROXIES
Patitioning is easer if there are enough proxies avalable on the network. The
smdlest-last sequential assigning algorithm proposed earlier can be applied. If the number of

color used by the approximate agorithm exceeds the number of proxies, the exact coloring

25

dgorithms can be gpplied. Exact coloring dgorithms give the solution to partition with
minima number of proxies If the number of proxies avalable is fewer than the chromatic
number (minima number of coloring) for the graph, an ided partitioning cannot be achieved.
In this case, we can use the exact coloring agorithm by assigning an maximum independent
M, in G tothefirg proxy, andassgn M, in G, =G - M, to the second proxy, and
soon, until n- 1 proxiesin N have been used. The remaindering agents (which may not
be independent) are assigned to the last proxy. Therefore, agents on each proxy are

independent, except the last one. And we can concentrate on protecting the last proxy.

4. CONCLUSIONS

In this paper, amode for software authorization and protection in mobile code systems
is proposed. To achieve flexible and globa security for the rapid growing network
environment, the protection for both the software property and principles in the network
environment have been taken into consideration. In the proposed model, a software consists
of agents. The privileges to access these agents are separated and distributed to a number of
trusted computationa proxies. The execution of a software are conducted by cooperation of
the agents and the proxies containing them. The user holding part of agents of the software
will not be able to use the software without the help of these proxies.

Methods for software partitioning in this environment are al'so proposed. Independent
agents are assigned to the user, which provide little information without cooperation with
agents on the proxies. To improve the performance in this environment, computation load of
the proxies and communication load between proxies and user should be minimized. An
optima assgnment of agents for the software is dso proposed to minimize, under the
Security congderations, the computation load of proxies and the communication load
between proxies and user. To reduce the risk of proxies being attacked, vertex coloring has

been gpplied to the partitioning. In the case that a proxy is compromised, little information

26

can be acquired by the intruder.

References

[Aho74] A. V. Aho, J E. Hopcroft and J. D. Ullman, “The Desgn and Andyss of
Computer Algorithms,” pp. 364-404, Addison-Wesley, Reading, MA 1974.

[Baa96] E. Bdasand J Xue, “Weighted and Unweighted Maximum Clique Algorithms
with Upper Bounds from Fractional Coloring,” Algorithmica 15, pp. 397-412,
1996.

[Bark89] W. C. Barker, “Use of Privacy-Enhanced Mall for Software Didribution,” Fifth
Annua Computer Security Applications Conference, pp. 344-347, 1989.

[Best79] R. Best, “Microprossor for Executing Encrypted Programs” US Patent 4,
168396, 1979.

[Bic96] L. F. Bic, M. Fukuda, and M. B. Dillencourt, “ Digtributed Computing Using
Autonomous Objects,” |EEE Computer, August 1996.

[Carz97] A. Cazaniga, G. P. Picco, and G. Vigna, “ Designing Didributed Applications
with a Mobile Code Paradigm,” In Proceedings of the 19th International
Conference on Software Engineering, Boston, Ma.,, May 1997.

[Cian97] P. Ciancarini and D. Ross, “ Jada -- Coordination and Communication for Java
Agents” In Mobile Object Sysems. Towards the Programmable Internet,
pages 213-228. Springer-Verlag, April 1997. Lecture Notes in Computer
Science No. 1222.

[Chen88] G. H. Chen, M. T. Kuo, and J. P. Sheu, “An Optima Time Algorithm for
Finding a Maximum Weight Independent Set inaTree,” BIT 28, pp. 353-356,
1988.

[Chris7l] N. Chrigofides, “An Algorithm for the Chromatic Number of a Grgph,” The
Computer Journd, 14, p. 38, 1971.

[Chris75] N. Chrigtofides, “ Graph Theory,” Academic Press, London, 1975.

[Clark91] J. Clark and D. A. Holton,” A First Look a Graph Theory,” World Scientific,

1991.

27

[Curtiso4]

[Dekins5]

[Dean96]

[Dono94]

[Garey79]

[Ghez97]

D. Curtis, “Software Privacy and Copyright Protection,” WESCON/94,
|dea/Microel ectronics, Conference record, pp. 199-203.

K. J Dakin, “Do You Know What Your License Allows?’ |EEE Software, pp.
82-83, May 1995.

D. Dean, E. Feten, and D. Wallach, “ Java Security: From HotJava to Netscape
and Beyond,” Proc. IEEE Symp. Security and Privacy, pp. 190-200, May
1996.

S. Donovan, “Patent, Copyright and Trade Secret Protection for Software,”
|EEE Potentids, pp. 20-24, August/September 1994,

M. R. Garey and D. S. Johnson, “ Computers and Intractability: A guide to the
Theory of NP-Completeness,” Freeman, San Francisco, CA., 1979.

C. Ghezzi and G. Vigna, “Mobile Code Paradigms and Technologies: A Case
Study,” In Proceedings of the Firg Internationa Workshop on Mobile Agents,
Berlin, Germany, April 1997.

[Gong97] L. Gong, "New Security Architectura Directions for Java (Extended Abstract)” .

[Gos96]

[Gray95]

[Harn92]

In Proceedings of IEEE COMPCON, San Jose, Cdifornia, pp. 97-102, Feb.
1997.

J Goding and H. McGilton, “The Java Language Environment,” Sun
Microsystems, May 1996, http://java.sun.com/doc/language_environment/.

R. S Gray, “Agent Tcl: A Transportable Agent System,” In Proceedings of the
CIKM Workshop on Intdligent Information Agents, Batimore, Md., December
1995.

L. Han, H.Y. Lin and S. Yang, “A Software Authentication System for
Information Integrity,” Computers and Security, Vol.11, No.4, pp. 747-752,
1992.

[Karjoth97] G. Karjoth, D. B. Lange, and M. Oshima, “A Security Modd for Aglets”

[Kent80]

[Kopf87]

|EEE Internet Computing, 1997.

S T. Kent, “Protecting Externdly Supplied Software in Smal Computers,”
Ph.D. dissertation, MIT/LCSTR-255. MIT, Cambridge, Mass, 1980.

R. Kopf and G. Ruhe, “A Computational Study of the Weighted Independent

28

Set Problem for Generd Graphs,” Foundations of Control Engineering, pp.
167-180, 1987.

[Neffa4] R. E. Neff, “Software Pracy: International Copyright Overview,”
WESCON/94, |dea/Microelectronics, Conference record, pp. 190-195.

[Parda9l] P. M. Parddosand N. Desa, “ An Algorithm for Finding a Maximum Weighted
Independent Set in an Arbitrary Graph,” Int. J Comput. Math. 38, pp.
163-175, 1991.

[Rubin95] A. D. Rubin, “ Trusted Didtribution of Software Over the Internet,” Proc. IEEE
Symp. On Network and Digtributed System Security , pp. 47-53, 1995.

[Sun96a] “Remote Method Invocation Specification”, Sun Microsystems Inc.
http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmi TOC.doc. ht
ml.

[Sun96b] “Sgned Applels and Digitd Sgnaures” Sun Microsysems Inc.
http://java.sun.com/products/ JDK/1.1/docs/guide/signing.

[Tarjan77] R. E. Tarjan and A. E. Trojanowski, “Finding a Maximum Independent S,
SIAM J. Comput., 6, no. 3, pp. 537-546, 1977.

[Venners97] B. Vennas “The Architecture of Agletls” Java World,
http:/Amww.java-world.com/javaworld/jw-04-1997/jw- 04-hood.html, April
1997.

[Voelker86] J. Voeker and P. Wdllich, “ How Disksare * Padlocked' ,” IEEE Spectrum,
p. 32, June 1986.

[Welsh67] D. J. A. Welsh and M.B. Powdll, “ An Upper bound for the Chromatic Number
of a Grgph and its Application to Timetabling Problems,” Comput. J., 10:85-86,
1967.

[Whited0] S. R. White and L. Comerford, “ABYSS. Architecture for Software
Protection,” |EEE Transactions on Software Engineering, Val. 16, No. 6, pp.
619-629, June 1990.

[Wilson97] A. Wilson, “ Software Security and the DirectPlay API,” Dr. Dobb’ s Journd, pp.
66, April 1997.

[Xuedd] J Xue, “Edge-Maximd Triangulated Subgraphs and Heurigtics for Maximum

29

Clique Problem,” Networks, Val. 24, pp. 109-120, 1994.
[Zhang97] X. N. Zhang, “ Secure Code Digtribution,” |EEE Compuiter, Val. 30, No. 6, pp.
76-79, June 1997.

