
Optimal Assignment of Mobile Agents for Software
Authorization and Protection*

Shiuh-Pyng Shieh, Chern-Tang Lin, Shianyow Wu
Department of Computer Science and Information Engineering

National Chiao Tung University
Hsinchu, Taiwan 30010

ABSTRACT

 In this paper, a model for software authorization and protection in mobile code

systems is proposed. In the model, a software is partitioned into objects, called mobile

agents, and the privileges to access these agents are separated and distributed to the user’s

local system and a number of trusted servers called trusted computational proxies. The

execution of a program (software) is conducted by cooperation of the agents and the

proxies that contain them. Two agents are dependent if there is message passing between

them. To reduce the risk of software being attacked, dependent agents are distributed to

different proxies. In this way, if a proxy is compromised, minimal information of the software

will be disclosed. Methods for assigning agents to proxies are also proposed to minimize,

under the security constraints, computation load of the proxies as well as communication

load between the user’s local system and proxies.

Keywords: Software protection, mobile code, remote execution, Java language, proxy.

1. INTRODUCTION

The rapid development of network and advanced technologies enable new software

capabilities and wide market interest, but software piracy, such as the unauthorized copying,

use, or distribution of software products, is still a serious and tough problem to cope with.

* This work was supported in part by the National Science Council, Taiwan under contract NSC

86-2622-E-009-007R.

 2

Although various software protection schemes, have been proposed, software piracy still

causes major losses to software vendors since some protection schemes can be easily

cracked by a malicious user and some require additional costs for users [Curtis94] [Neff94]

[Dono94] [Dakin95] [Voelk86]

[Wilson97].

Software

Authentication Process

Main Program

software
cracker

modify the
authentication

process

access the
main program

directly

• Authentication process may check key disks, parallel-port locks,
or custom serial-number validations

Figure 1 Common software protection schemes

Most of these software protection schemes embed access control mechanisms in the

program code, and a user has to pass these authentication processes before using the

software. The process may require serial number of the corresponding user, password from

the manual, or checking the source where the software locates (CD or floppy disk, for

example). Unfortunately, these authentication processes have been cracked by many

crackers, shown as Figure 1. The difficulty of cracking such a protection scheme depends

on how complex this part of code is written. For example, some software vendors put

checksum values for the authentication process in the software. If someone tries to modify

the code to bypass the authentication process, an error may be found later and the execution

will be terminated. This just increases the time to crack the software , however, it cannot

prevent unauthorized use.

 3

Recent advance of network technology allows network users to access the Internet in

a more effective way. The growing importance of Internet has stimulated research on a new

generation of programming languages. Recently, mobile code languages

[Ghezzi97][Gosling96][Gray95] have been proposed as a technological answer to the

problem. These languages view the network and its resources as a global environment in

which computations take place [Bic96][Carz97] [Cian97]. A mobile-code-based software

is partitioned into objects, called mobile agents. For example, in mid-1995, Sun

Microsystems announced the Java language [Gosling96]. The Java language is a simple,

object-oriented, portable, and robust language that supports mobile codes. Java augments

the present WWW capabilities by dynamically downloading the mobile agents, called

applets in Java, and running these agents locally [Sun96a].

 The development of mobile code technologies changes the style of software usage. The

mobility and cross-platform characteristics of mobile agents allow software rental on the

network. Users can download the corresponding agent of software across the network and

run it dynamically when they want to execute some functions of the software. They will no

longer be asked to purchase the entire software when they just need to use part of the

features. Revision for software in the environment becomes simple. On the other hand,

software developers can always provide the newest software for users, and can know how

many times a program has been downloaded by a user. However, illicit dissemination of

software appears to be more serious on the network. It is desirable to control the access

that only authorized users can download and execute a program. When a user wants to

download a program from the service provider, the conditional access can be achieved by

appropriately setting download permissions. But the service provider has no control over the

mobile agents that have been distributed to users. That is, the new style of software usage on

the network causes more serious software-piracy problem, and, similarly, common software

protection schemes that relies on the authentication process within the software itself cannot

 4

effectively prevent the software from being cracked by a smart cracker.

 To deal with the problem of software piracy on the network, not only the software

itself but also the environment associated with the software must be considered. The

compromised version of software may be harmful to users executing it, since it may contain

a Trojan Horse or virus [Bark89][Dean96] [Rubin95]. The malicious code that contains a

Trojan Horse or virus accessing user’s system resources such as the file system, the CPU,

the network, and the graphics display may cause unpredictable effects, such as stealing

user’s privacy or damaging resources in user environment. Besides Trojan horse and virus, a

user who modifies the code to deviate from the prescribed execution may cause more

problems to other parties on the network. For example, a user may cheat in a multi-player

game on the network if he has the ability to modify the prescribed code of the software.

Therefore, not only mobile-code-based softwares require a good software authorization and

protection model to prevent software piracy, but also users need a secure environment

against the attacks from malicious mobile agents.

To distribute the software in a secure manner that prevents users’ local systems from

attacks of maliciously modified agents, digital signature can be applied. Many code

distribution mechanisms have been proposed to enforce trusted distribution of software

[Barker89][Harn92] [Rubin95][Zhang97]. In JDK 1.1 (Java Development Toolkit)

[Sun96b][Gong97], the code signing feature is provided and the user who downloads the

agent can identifying the sender by verifying the signature. If the agent is not trusted,

execution will be restricted in a sandbox with only limited system resource provided.

 Another Java-based mobile agent, called aglet, was developed at IBM’s Tokyo

Research Laboratory [Venners97]. Aglets are able to automatically visit aglet-enable hosts,

execute on them, and communicate with other aglets in the computer network. Like other

mobile agents, aglets are a potential threat to a system and they are also exposed to threats

by their hosting system. Karjoth et al. thus proposed a security model for the aglets

 5

development environment [Karjoth97]. But, like other literatures which discuss the security

issues of mobile agents, their security model currently only focus on protection of the host

against aglets. That is, the application (or software) composed of aglets will suffer from the

problems of software piracy from malicious hosts (users), such as unauthorized use or illicit

dissemination.

 In this paper, we will propose a software authorization and protection model which

emphasizes the protection for mobile-code-based software (or the software venders) to

prevent the attacks of hosts (users). To achieve flexible and global security for the rapid

growing network environment, the protection of the software property in the network

environment has been taken into consideration. In the model, the privileges to access the

agents of a program are separated and distributed to the user’s local system and a number

of trusted servers called trusted computational proxies. Dependent agents are distributed to

different proxies to minimize the information disclosure in case a proxy is compromised. In

the environment, methods for assigning agents are also proposed to minimize, under the

security constraint, computation load of the proxies as well as communication load between

the user and proxies.

 This paper is organized as follows. In Section 2, our proposed model for software

authorization and protection is presented, which is based on the concept of separation of

execution privileges. In Section 3, a model for software partitioning to achieve protection in

this environment is presented, and related issues for achieving better performance and

security will be discussed. Finally, we give the conclusions in Section 4.

2. THE PROPOSED AUTHORIZATION AND PROTECTION MODEL

 In mobile code systems, a program (software) is composed of a number of agents. An

agent can be downloaded dynamically from the remote machine and executed on the local

machine, and a job can be processed by the cooperation of these agents. In the section, an

authorization and protection model is proposed to enhance the security and protection of

 6

mobile codes by delegating some critical execution services to one or more trusted and

protected proxies.

2.1 SYSTEM MODEL OVERVIEW

 The execution of a program can be considered to include three parts: incoming

messages, transformation processes, and outgoing messages. An agent participates in the

transformation process for a message if the agent sends or receives the message. If some

critical agents are removed from a program, execution of the program cannot proceed.

 With the RMI (Remote Method Invocation) technology for Java language that enables

cooperating of computers on the network, we proposed a model that protects software with

the help of trusted, protected computational proxy servers, instead of tamper-resistant

hardware devices installed in the user’s environment. In this model, agents of the software is

partitioned into two types, general and privileged agents. The users can acquire only general

agents. And the privileged agents are forced to be executed in a protected environment, that

is, the trusted computation proxy.

Trusted
Computational

Proxy

User Agent controlling process

Agent controlling process

common agent
privileged agent

Global view of
a software

Figure 2 The proposed protection model

 The trusted computational proxy provides computation services for privileged agents,

 7

as shown in Figure 2. Only a trusted proxy has the capability to get privileged agents and

execute them. The proxy executes the agents on behalf of an authorized user and returns the

result to the user. In this way, an unauthorized user cannot acquire the results of privileged

agents, and therefore benefit little from the software. A program may consist of many

proxies, and each proxy executes only a subset of the privileged agents. Thus, a

compromised proxy will not leak all privileged agents. In the proposed model, agents to be

downloaded are encrypted by agent keys, and the agent keys for each agent are different.

These keys are only available to trusted proxies or authorized users. The model consists of

six major components:

1. Software Vendor: The company who developed the software.

2. Certification Authority: The party who signs and issues the certificate containing

the user’s public key.

3. Software Authentication Center: An accredited organization that authenticates the

software developed by software vendors, and signing legitimate parts of the

software.

4. Agent Server: The server who stores agents provided by software vendors. When

a host wants to execute an agent, it first downloads the agent from an agent

server.

5. Trusted Computational Proxy: The server that provides computational services of

privileged agents for users.

6. User: The user who uses the software.

2.2 LICENSES FOR THE SOFTWARE

 In our model, there are two kinds of licenses, publication license and execution license.

The publication license gives the right for software vendor to distribute an agent and the

execution license gives the right for user or proxy to download and execute an agent. Note

 8

that this paper does not clearly describe the detailed format of licenses since the

implementation issue is out of the scope of the paper.

A. PUBLICATION LICENSE

 In our environment, secure distribution of agents is achieved by the publication licenses.

For each agent, there is a publication license associated with it. The publication license is

issued and signed by software authentication center, and every agent provided by a software

vendor must have a legal publication license.

 A publication license consists of:

1. Serial number

2. Software vendor information

3. Software authentication center information

4. Agent information (ID, version)

5. Message digest of the agent

6. Issuing and expiration time

 The license is signed by the center’s private key. When a user or proxy downloads an

agent from the agent server, it verifies the agent by the center’s public key, and also checks

the message digest and expiration time of the agent.

 When the software vendor releases a new agent, it first sends it and the related

information about the agent (for example, specification or source code) to the software

authentication center. The software authentication center checks the agent, and if there is no

problem with it, the center issues a publication license of this agent and sends back to

software vendor.

B. EXECUTION LICENSE

 The user or proxy must get an execution license to execute the corresponding agent.

 9

The execution license is issued and signed by software vendor to prevent an unauthorized

user from forging it.

 The execution license consists of:

1. Serial number

2. Execution capabilities for agents of the software

3. Delegation capabilities for agents of the software (For user only)

4. User or proxy’s information

5. Software vendor information

6. Issuing and expiration time

 The execution capability of an agent determines whether a user or a proxy can

download the agent. If the user has the execution capability of an agent, he can get some

extra information of the agent from software vendor, for example, agent key or message

digest of the agent, to decrypt and verify the agent. To execute the privileged agents that

have to be executed in the proxies, a user must have the delegation capability for these

agents. That is, the delegation capability determines whether a user can delegate the

execution of an agent, which he cannot execute directly, to the proxy.

 The execution and delegation capabilities for a user depends on how many agents the

user has been authorized to use. If the user is interested in only some features of the

software, software vendors can issue the license with the capabilities for only the agents

providing these features.

The rest of the license contains the other basic information, such as the user’s certificate

identifying who will execute the agent, the information of the software vendor who produced

the agent, the expiration time of this license, and so on. The information helps the agent

servers to verify the legality of the execution licenses while the user/proxy requests to

download agents.

 10

2.3 USING THE SOFTWARE

 The user can purchase the execution license of the software he is interested in from the

software vendor. Once the user received the execution licensed issued by software vendor,

he can begin to use the software. In this section, we describe the related issues when a user

is using the software.

A. AGENT DOWNLOADING

 In mobile code system, agents are dynamically downloaded from a remote server and

executed in a local machine. Agent downloading is necessary if there are no previously

cached agents in a proxy or user’s computer. The agent server controls the access to the

agents to be downloaded. The client (proxy or user) sends the request for the agents along

with his execution license. If the license is valid and it consists the execution capability of the

agent, the request will be accepted. Otherwise it will be denied.

 When a user or a proxy received an agent from the agent server, he can decrypt it with

the corresponding agent key. The verification process verifies the validity of an agent, which

includes correctness and effectiveness of the downloaded agent.

B. EXECUTION OF THE SOFTWARE

 After a user downloads the agents from an agent server, he can begin to execute them.

Since privileged agents are forced to be executed by the proxies, the user has to bind these

agents first before execution. In the binding phase, the user sends his execution license to the

proxy server he wants the execution to be delegated. The user and the proxy mutually

authenticate execution license of the other. The execution then proceeds by executing the

agents corresponding to the capabilities listed in user’s execution license.

 If there are more than one proxy participated in the execution, the user will be required

to explicitly make connections to each of them and authenticate with each other. For the first

 11

time using the software, the user requests the software vendor for a list of available proxies.

He then chooses the proxy for computational service and register himself at this proxy.

Registration for execution licenses will be discussed in the next section.

2.4 LICENSE REGISTRATION AND REVOCATION

 Once an execution license has been issued to a user, the user can use the software with

the capabilities listed in the license. However, sometimes the software vendor may wish to

revoke the license of a user if illegal behavior of the user has been found. Moreover, with the

registration and revocation support, it is desirable to record in a license the number of

executions granted to a user. The proxy records the number of executions invoked by the

user, and if it exceeds the limitation recorded in the user’s execution license, subsequent

execution will be rejected.

 Registration is required for the first time when a user wants to use the service provided

by a proxy. The execution license will only be valid for the proxy if there is a corresponding

registry [,,]U PSNU DS
(signed by the software vendor, where U is the user’s identity, P

is the proxy’s identity, DS is software vendor’s private key, and SNU is serial number

of the license) in the proxy. When a user wants to delegate the execution to a proxy, the

proxy checks both the user’s execution license and the registry. The license without a

corresponding registry will be considered invalid. The registration steps are described as

follows:

Step 1: A user sends a request along with his execution license to the software

vendor for registration at a proxy.

Step 2: The software vendor checks validity of the user’s license. Go to Step 3 if

valid, otherwise stop.

Step 3: The software vendor sends a message [,,]U PSNU DS
 (signed by the

 12

software vendor) to the new proxy to add user’s record at the proxy.

Step 4: The software vendor updates its own registry for the user.

 To revoke an execution license of a user in a proxy, the software vendor simply tells

the proxy to remove the registry for the user and then removes the registry located at the

software vendor itself. Then the user’s execution license will be revoked because no

registries can be found in the proxy. In addition, the vendor can also inform the user that the

license is revoked.

3. SOFTWARE PARTITIONING

 Software partitioning means separating agents such that a user cannot benefit from

holding only a subset of agents of a program. The goal is to partition the software in such a

way that a user holding a single agent or a subset of the agents will not be able to get an

acceptable result if acquiring the result requires the help of other agents.

 In Figure 3, we compare two different ways of software partitioning. Assume that each

area in the graph represents a code fragment, that is, an agent. The execution of an agent

depends on the execution of adjacent agents, that is, there will be message passing between

the adjacent code fragments. There are two partitions in the graph, where a light-color area

represents an agent to be executed by a user, and a dark-color area represents an agent to

be executed by a trusted computational proxy. It is clear that the partitioning on the right of

Figure 3 provides better protection than the partitioning on the left. The method of

partitioning in the left graph simply cut the program into two halves, where the left half will be

given to the user and the right half will be given to the proxy. If an authorized user acquires

any half of the program, he can still execute partial functions of the software and get some

results. On the other hand, the method on the right divides the program into small pieces,

and distributed them to the user and proxy server. In case either one of them is

 13

compromised, an intruder can benefit little from the compromised agents, because many of

the agents he received relies on execution of the other agents.

Poor partitioning Better partitioning

Figure 3 Example of partitioning

 The execution of an agent may disclose some information to the user. The more agents

the user can get, the more information may be gained from the user. If the user gets all the

agents, we can say that the whole software is compromised. However, for two nonadjacent

compromised agents, since they are not directly dependent, the intruder can only acquire

two small pieces of information from them, but cannot find the relationship between the two

pieces. However, for two adjacent agents, the intruder can find their relationship and merge

the two pieces of information to acquire more information.

3.1 PROPOSED PARTITIONING MODEL

 A program in the mobile code system can be represented as an undirected

dependency graph G V E=(,), where a vertex represents an agent and an edge

represents the dependency between two agents. If an agent may communicate with another

 14

agent, they are dependent. For two dependent agents in execution, there will be messages

passing between them.

 In the software, we assume that user can get more acceptable result from it if he can

get a larger subset of the connected agents. Giving user two independent agents will provide

better protection than two dependent agents, because the user cannot benefit from two

independent agents directly if they depend on other agents executed in the proxy. Based on

the assumption, we proposed a partitioning model, in which any two agents executed by the

user are independent, as shown in Figure 4.

Proxy

User

Software

Figure 4. The proposed partitioning model

 In the scheme, each agent on the user’s machine depends on the agents executed by

the proxy. The partitioning model considers the security only at the agent level, and the

internal structure of an agent will not be covered in this paper. An agent is a basic element in

the model. For a small software with only several agents, a heuristic partitioning may work

well. However, for a large software composed of many agents, our model gives a good

protection by partitioning the software into pieces which will be assigned to different

participants to acquire better security. In the assignment, we consider the following two

 15

issues:

1) performance

2) software protection

 For the first issue, we wish to achieve good performance by reducing the

computational load of the proxy and distributing more agents to the user. Since the proxy

provides the computation services for many users, its load is usually rather heavy and it may

become a bottleneck. The computation load on the proxy should be an important factor for

the overall performance. To reduce the computation load on the computation proxy, it is

desirable to distribute as many agents to the user as possible. On the other hand, for the

second issue, it is desirable to distribute as few agents to the user as possible to reduce the

possibility of software piracy. To balance the two requirements, a possible approach is to

assign as many agents to the user as possible under the constraint that all agents executed by

the user are independent. Furthermore, if each agent has a different computational cost, it is

also desirable to find an assignment that minimizes the computation load on the proxy. Later

in Section 3.3, we will also take the communication load between any two agents into

consideration, and find the optimal assignment for reducing both computation cost and

communication load.

3.2 ASSIGNMENT OF AGENTS

 In this section, we will discuss the method for assigning agents to participants, including

the user and the proxy. In the dependency graph for a program, the agents assigned to be

executed by the user is marked number 0, and those executed by the proxy are marked

number 1 or greater. Not all agents of the program will be freely assigned. Some agents may

have special properties and have to be assigned at specific locations. Before partitioning, we

find this kind of agents and assigned them first. The steps for the initial assignment are

described as follows, and an example is shown in Figure 5.

 16

Step 1: Mark the nodes that have to be placed at specific locations.

 Some agents have to be executed at specific locations. For example, some agents

may be designed for reading data from the user’s keyboard, displaying data to the

user’s monitor, or reading/writing data from the user’s hard disk. These agents have to

be executed by the user, and marked number 0. Some agents have to open some

network connections from a proxy (in a firewall, for example) or reading/writing

something from the proxy’s file system. These agents should be placed in the proxy,

and marked number 1. In this step, all special nodes (agents) are marked a number

depending on the location the agents has to be assigned.

Step 2: The nodes adjacent to nodes with 0 are marked 1.

 Since the agents executed by the user must be independent, all agents adjacent to

agents with number 0 cannot be marked number 0 again. These agents have to be

marked number 1.

user ’s input

user ’s
monitor

user’s disk

file system
behind a
firewall

0

0 1

0

0

0 1

0

1

1

1

1

Step 1 Step 2

Figure 5. An example for initial agent assignment

 17

 Here are some examples for this kind of agents that have to be initially assigned.

User: Reading from keyboard

Reading or writing from user’s hard disk

Displaying on the monitor

Communicating with network with user’s identity

Proxy: Reading or writing from proxy’s file systems

Execution from behind the firewall

Agents consisting of critical codes

 In addition, the security concerns is also an important factor for the initial assignment of

agents. In the network environment, sometimes an agent may invoke some operations on a

specific principle, and the correct execution must be assured. For example, the software

vendor may want to record execution states of the software provided for users. Sometimes

a database can be only accessed by a trusted party. If the execution of the agent is

performed by the user, he may modify the code to deviate from prescribed execution and

creates faulty results. Thus these agents have to be assigned to the proxy to ensure correct

results.

3.3 PARTITIONING FOR PERFORMANCE CONSIDERATIONS

 If the proxies are trusted and protected, the assignment of adjacent agents to the same

proxy will not be a problem. Since the unauthorized users cannot access agents in the

proxies, we just need to assign the nodes in such a way that all agents in the user are

independent. The assignment problem is thus reduced to finding the maximum independent

set in a dependency graph. Since each agent usually need different execution time, we assign

a weight to each agent, where an agent with heavy weight imposes more computation cost

 18

than an agent with light weight. Since each agent has a different computation cost, the

assignment problem becomes finding the maximum weighted independent set in an arbitrary

graph.

A. Finding Maximum Weighted Independent Set

 In a graph G V E=(,), and each vertex v i has a positive weight wi. Let S to be

the independent set for the graph G if for all Svv ji ∈, , vv Ei j∉ . The maximum

weighted independent set for the graph G is to maximize ∑
∈

=
Sv

i
i

wSW)(. A clique of graph

G V E=(,) is the subset C V⊆ , where G C() is a complete graph. Finding the

maximum weighted independent set in G is equivalent to finding the maximum weighted

clique in G , where a maximum weighted clique is a clique that the sum of all of its weighted

vertices is maximal.

 The problem of finding the maximum weighted or unweighted independent set in an

arbitrary undirected graph, has been proven to be NP-hard [Garey79]. The problem is

notoriously hard even if vertices of the graph are unweighted. For the unweighted case, an

efficient algorithm for finding maximum independent set has been presented by [Tarjan77],

which takes Ο()/2 3n time. Many heuristic algorithms have been proposed for finding

maximum weighted independent set or maximum weighted clique in an arbitrary graph

[Balas96] [Kopf87] [Pardalos91] [Xue94]. Polynomial time algorithms for many other

restricted classes of graphs have also been proposed. If the graph is a tree, the maximum

weighted independent set can be found in Ο()n [Chen88].

 With the algorithms for finding maximum weighted independent set, the optimal

partitioning for the software that the computation load of the proxy is minimum and agents

executed by user are independent can be found.

 19

B. Considering Both Computation and Communication Load

 Now we consider that the network bandwidth between user and proxy may be limited,

and the computing power of the proxy may be also limited. We want to partition the

software that gives optimal assignment of load under such limitations. In the agent

dependency graph, we define each edge to be the network communication loads between

two agents. The communication load is often measured as the average number of messages

in an execution session between two agents, and it is defined to be zero if:

1) the two agents are nonadjacent, or

2) the two agents are adjacent but assigned to the same location.

 Then we define communication degree of an agent to be the total communication load

between the agent and all other adjacent agents. Here are the steps for calculating the

communication degree of an agent.

Step 1: Measure the communication load between any two agents and define it as

weight of the edge in the graph.

Step 2: Add the weights of all incident edges of a node to be its communication

degree, if the adjacent node has not been marked the same number as the

node.

 An example of the procedure for calculating the communication degrees of each agent

is given in Figure 6. In the graph preceding the arrow, each agent is labeled its computation

load and each edge is labeled its communication load. In the graph following the arrow, each

vertex (agent) v i is labeled the pair (mi, ni), where mi represents computation load of the

agent, and ni represents communication degree of the agent. Since the two dark agents have

 20

been initially marked the same number and assigned to the same host, communication load

of the edge between them is not added to communication degrees of both agents.

5

1
3

2

5

4
6

2

3

7

(2)

(5)

(3)

(7)

(9)

(6)
(4)

(7)

(8)

(3)

2

(2,5)

(3,2)

(7,3)

(9,14)

(6,9)
(4,7)

(8,8)

(3,14)

(7,5)

(5,7)

Figure 6. Calculating communication degree

 Consider that the computing power of proxy or the network bandwidth may be limited.

We can formulate the problem for partitioning. First we define some variables that will be

used in the problem.

mi: computation cost of agent v i

Mall: total computation cost of all agents

ni: communication degree of agent v i

Nall: total communication degree of all agents

P: computing power of the proxy

B: the network bandwidth

 21

The problem for partitioning under different limitations becomes:

1. Minimize the computation cost under limited network bandwidth between

the proxy and user.

Maximize ∑
∈

=
Sv

i
i

my subject to the constraint that ∑
∈

≤
Sv

i
i

Bn , where S is an

independent set for graph G.

2. Minimize the communication load under limited computing power of the

proxy.

Maximize ∑
∈

−=
Sv

iall
i

nNz subject to the constraint that ∑
∈

−≤
Sv

alli
i

PMm ,

where S is an independent set for graph G.

 The independent set S contains the agents that will be executed by the user. The two

problems are equivalent, and we formulate our problem as follows. According to the

description of subsection 3.3(A), the problem is to find the subset S of vertices such that

∑
∈

=
Sv

i
i

mSM)(is maximum under the constraint kn
Sv

i
i

≤∑
∈

, where k is a given upper

bound and 0≤ ≤k B. Here we present a heuristic method to solve this problem

recursively. The algorithm is able to find, under a given network bandwidth constraint, the

independent set with maximum computation weight for graph G.

Algorithm for finding the independent set with maximum computation weight

 Step 1: (1) Set 0,0, ==∅= NMS .

(2) Set 0,0, 000 ==∅= NMS .

(3) Set S M N1 1 10 0= ∅ = =, , .

 Step 2: If G≠ ∅ choose a vertex i in graph G, otherwise stop.

 22

Step 3: For the chosen vertex v i, if n ki> or vertex v i is initially assigned 1, go to

Step 5.

Step 4: Set }{0 ivGG −= } oadjacent t vertices{ iv− and inkk −=0 . Find

M N S0 0 0, , by calling the algorithm for graph G0. If vertex v i is initially

assigned 0, go to Step 6.

Step 5: Set }{1 ivGG −= and k k1= . Find M N S1 1 1, , by calling the

algorithm for graph G1.

 Step 6: If M M0 1> then iii vSSnNNmMM ∪←+←+← 000 ,, .

Otherwise 11,, SSNNMM ←←← .

 After executing the heuristic algorithm, the set S consists of the agents to be assigned to

the user. Note that in the beginning if kn
Iv

i
i

>∑
⊂

 where I is the initially assigned set of

independent vertices in G, the process should be stopped because no valid solution

satisfying the constraint in graph G can be found. Furthermore, if k is large enough to

support all possible communication between the user and proxy, the partitioning problem is

reduced to finding the independent set with maximum computation weight.

3.4 PARTITIONING AGENTS AMONG MULTIPLE PROXIES

 In the previous section, we investigate the methods for partitioning agents between a

user and a proxy. In the section, we will investigate the partitioning method for the network

environment with multiple proxies, where each proxy may be compromised. To reduce the

risk of software piracy, we assign the agents to the proxies in the way that each proxy gets

independent agents. Thus, the disclosure of software information can be minimized. The

problem of assigning independent agents to each proxy can be formulated as the vertex

coloring problem. We discuss the vertex coloring as follows.

 23

 Let G be a graph. A vertex coloring of G assigns colors, usually denoted by 1, 2,

3, … , to the vertices of G, one color per vertex, so that adjacent vertices are assigned

different colors. The minimum number n for which there is an n-coloring of the graph G is

called the chromatic number of G and is denoted by χ()G . If χ()G =k we say that G is

k-chromatic.

 The problem of coloring vertices in an undirected graph has been shown to be NP

complete, i.e., no algorithm has yet been proposed to find the optimal coloring in polynomial

time [Aho74]. However, there are a number of coloring algorithms which give

approximations to minimal coloring. These heuristic graph coloring algorithms can be used to

find good approximations to the chromatic number of those graphs that are too large for the

coloring [Clark91]. We will discuss both approximate vertex coloring and exact vertex

coloring in the following sections and give the guidelines for partitioning with these

algorithms.

A. APPROXIMATE PARTITIONING

 If there are enough proxies available on the network, we can use the approximate

coloring algorithms for partitioning, which solve the problem in polynomial time. In this

section, we discuss the coloring algorithms that give approximation to minimal coloring. One

of the coloring algorithm is the simple sequential algorithm [Welsh67]. The algorithm starts

with any ordering of the vertices of the graph G, say v vn1,...,. It first assigns color 1 to v1;

then moves to vertex v2 and colors it 1 if it is not adjacent to v1; otherwise, colors it 2.

Proceeding to v3, color it 1 if it is not adjacent to v1; color it 2 if it is adjacent to v1, but

not adjacent to v2; otherwise, color it 3. Proceed in this manner, coloring each vertex with

the first available color that has not been used by any of its adjacent vertices. In the

following, we proposed a new smallest-last sequential assigning algorithm to solve the

assigning problem with some vertices initially assigned.

 24

The Smallest-Last Sequential Assigning Algorithm

 Assume that the agents executed by user are assigned color number 0, and agents

executed by proxies are assigned color number greater than 0 which each color number

represents a proxy. In the initial assignment, some agents may have been assigned to

designated locations. For the initially assigned proxies, the color numbers are chosen from 1,

and increasingly. We first delete the vertices that initially assigned number 0 and solve the

reduced subgraph. The smallest-last sequential assigning algorithm is described as follows.

Step 1: (1) Let U be the set of vertices initially assigned color number 0.

(2) Let P be the set of vertices initially assigned color numbers greater than

0

(3) Let UGH −= , where H is the subgraph of G with all vertices in U

deleted

Step 2: (1) List the vertices of P as axx ,...,1 .

(2) Choose nx to be a vertex of minimum degree in H P− .

(3) For 1,...,2,1 +−−= anni , choose xi to be a vertex of minimum

degree in the subgraph },...,,{ 11 +−−− ann xxxPH .

(4) List the vertices of H as nxx ,....,1 .

(5) List the colors available as 1,2,… ,r.

Step 3: For all ix , i=1,… ,a, let }{ ii pC = where ip is the initially assigned

color for ix .

For all ix , i=a+1,… ,n, let },...,2,1{ rCi = , which is the list of colors that

can color vertex ix .

Step 4: Set i=1.

 25

Step 5: If i > a, let ci be the first color in iC and assign it to vertex ix .

Step 6: Set }{ ijj cCC −= for each xj in H, j i> , and jx adjacent to ix .

Step 7: Set 1+← ii and go to Step 5 if ni ≤ .

Step 8: For i=1,… ,n, ci is the color assigned to vertex ix .

 After executing the algorithm, the agents can be partitioned such that

1) The user gets an independent set of agents.

2) Agents in each proxy are independent.

3) At most 1)]([max +
∈

i
Hx

xd
i

 proxies are required, where)(ixd is the degree

for vertex ix .

B. OPTIMAL PARTITIONING

 In this section, we discuss the exact vertex coloring, which gives partitioning with

minimal number of proxies. A graph can be colored optimally by coloring with the first color

a maximum independent set M1 in G, and then coloring with the second color with

another maximum independent set M2 in G G M1 1= − , and so on until all vertices have

been colored. Such kind of coloring algorithms are called optimal independent colorings

[Christofides71][Christofides75]. With the algorithms for maximum independent set

discussed earlier, we can partition the software and assign them with minimal number of

proxies.

3.5 GUIDELINE FOR PARTITIONING AMONG PROXIES

 Partitioning is easier if there are enough proxies available on the network. The

smallest-last sequential assigning algorithm proposed earlier can be applied. If the number of

color used by the approximate algorithm exceeds the number of proxies, the exact coloring

 26

algorithms can be applied. Exact coloring algorithms give the solution to partition with

minimal number of proxies. If the number of proxies available is fewer than the chromatic

number (minimal number of coloring) for the graph, an ideal partitioning cannot be achieved.

In this case, we can use the exact coloring algorithm by assigning an maximum independent

M1 in G to the first proxy, and assign M2 in G G M1 1= − to the second proxy, and

so on, until n−1 proxies in n have been used. The remaindering agents (which may not

be independent) are assigned to the last proxy. Therefore, agents on each proxy are

independent, except the last one. And we can concentrate on protecting the last proxy.

4. CONCLUSIONS

 In this paper, a model for software authorization and protection in mobile code systems

is proposed. To achieve flexible and global security for the rapid growing network

environment, the protection for both the software property and principles in the network

environment have been taken into consideration. In the proposed model, a software consists

of agents. The privileges to access these agents are separated and distributed to a number of

trusted computational proxies. The execution of a software are conducted by cooperation of

the agents and the proxies containing them. The user holding part of agents of the software

will not be able to use the software without the help of these proxies.

 Methods for software partitioning in this environment are also proposed. Independent

agents are assigned to the user, which provide little information without cooperation with

agents on the proxies. To improve the performance in this environment, computation load of

the proxies and communication load between proxies and user should be minimized. An

optimal assignment of agents for the software is also proposed to minimize, under the

security considerations, the computation load of proxies and the communication load

between proxies and user. To reduce the risk of proxies being attacked, vertex coloring has

been applied to the partitioning. In the case that a proxy is compromised, little information

 27

can be acquired by the intruder.

References

[Aho74] A. V. Aho, J. E. Hopcroft and J. D. Ullman, “The Design and Analysis of

Computer Algorithms,” pp. 364-404, Addison-Wesley, Reading, MA 1974.

[Bala96] E. Balas and J. Xue, “Weighted and Unweighted Maximum Clique Algorithms

with Upper Bounds from Fractional Coloring,” Algorithmica 15, pp. 397-412,

1996.

[Bark89] W. C. Barker, “Use of Privacy-Enhanced Mail for Software Distribution,” Fifth

Annual Computer Security Applications Conference, pp. 344-347, 1989.

[Best79] R. Best, “Microprossor for Executing Encrypted Programs,” US Patent 4,

168396, 1979.

[Bic96] L. F. Bic, M. Fukuda, and M. B. Dillencourt, “Distributed Computing Using

Autonomous Objects,” IEEE Computer, August 1996.

[Carz97] A. Carzaniga, G. P. Picco, and G. Vigna, “Designing Distributed Applications

with a Mobile Code Paradigm,” In Proceedings of the 19th International

Conference on Software Engineering, Boston, Ma., May 1997.

[Cian97] P. Ciancarini and D. Rossi, “Jada -- Coordination and Communication for Java

Agents,” In Mobile Object Systems: Towards the Programmable Internet,

pages 213-228. Springer-Verlag, April 1997. Lecture Notes in Computer

Science No. 1222.

[Chen88] G. H. Chen, M. T. Kuo, and J. P. Sheu, “An Optimal Time Algorithm for

Finding a Maximum Weight Independent Set in a Tree,” BIT 28, pp. 353-356,

1988.

[Chris71] N. Christofides, “An Algorithm for the Chromatic Number of a Graph,” The

Computer Journal, 14, p. 38, 1971.

[Chris75] N. Christofides, “Graph Theory,” Academic Press, London, 1975.

[Clark91] J. Clark and D. A. Holton,” A First Look at Graph Theory,” World Scientific,

1991.

 28

[Curtis94] D. Curtis, “Software Privacy and Copyright Protection,” WESCON/94,

Idea/Microelectronics, Conference record, pp. 199-203.

[Dakin95] K. J. Dakin, “Do You Know What Your License Allows?” IEEE Software, pp.

82-83, May 1995.

[Dean96] D. Dean, E. Felten, and D. Wallach, “Java Security: From HotJava to Netscape

and Beyond,” Proc. IEEE Symp. Security and Privacy, pp. 190-200, May

1996.

[Dono94] S. Donovan, “Patent, Copyright and Trade Secret Protection for Software,”

IEEE Potentials, pp. 20-24, August/September 1994.

[Garey79] M. R. Garey and D. S. Johnson, “Computers and Intractability: A guide to the

Theory of NP-Completeness,” Freeman, San Francisco, CA., 1979.

[Ghez97] C. Ghezzi and G. Vigna, “Mobile Code Paradigms and Technologies: A Case

Study,” In Proceedings of the First International Workshop on Mobile Agents,

Berlin, Germany, April 1997.

[Gong97] L. Gong, "New Security Architectural Directions for Java (Extended Abstract)" .

In Proceedings of IEEE COMPCON, San Jose, California, pp. 97-102, Feb.

1997.

[Gos96] J. Gosling and H. McGilton, “The Java Language Environment,” Sun

Microsystems, May 1996, http://java.sun.com/doc/language_environment/.

[Gray95] R. S. Gray, “Agent Tcl: A Transportable Agent System,” In Proceedings of the

CIKM Workshop on Intelligent Information Agents, Baltimore, Md., December

1995.

[Harn92] L. Harn, H.Y. Lin and S. Yang, “A Software Authentication System for

Information Integrity,” Computers and Security, Vol.11, No.4, pp. 747-752,

1992.

[Karjoth97] G. Karjoth, D. B. Lange, and M. Oshima, “A Security Model for Aglets,”

IEEE Internet Computing, 1997.

[Kent80] S. T. Kent, “Protecting Externally Supplied Software in Small Computers,”

Ph.D. dissertation, MIT/LCS/TR-255. MIT, Cambridge, Mass, 1980.

[Kopf87] R. Kopf and G. Ruhe, “A Computational Study of the Weighted Independent

 29

Set Problem for General Graphs,” Foundations of Control Engineering, pp.

167-180, 1987.

[Neff94] R. E. Neff, “Software Piracy: International Copyright Overview,”

WESCON/94, Idea/Microelectronics, Conference record, pp. 190-195.

[Parda91] P. M. Pardalos and N. Desai, “An Algorithm for Finding a Maximum Weighted

Independent Set in an Arbitrary Graph,” Int. J. Comput. Math. 38, pp.

163-175, 1991.

[Rubin95] A. D. Rubin, “Trusted Distribution of Software Over the Internet,” Proc. IEEE

Symp. On Network and Distributed System Security , pp. 47-53, 1995.

[Sun96a] “Remote Method Invocation Specification”, Sun Microsystems Inc.

http://www.javasoft.com/products/jdk/1.1/docs/guide/rmi/spec/rmiTOC.doc.ht

ml.

[Sun96b] “Signed Applets and Digital Signatures,” Sun Microsystems Inc.

http://java.sun.com/products/JDK/1.1/docs/guide/signing.

[Tarjan77] R. E. Tarjan and A. E. Trojanowski, “Finding a Maximum Independent Set,”

SIAM J. Comput., 6, no. 3, pp. 537-546, 1977.

[Venners97] B. Venners, “The Architecture of Aglets,” Java World,

http://www.java-world.com/javaworld/jw-04-1997/jw-04-hood.html, April

1997.

[Voelker86] J. Voelker and P. Wallich, “ How Disks are ‘Padlocked’,” IEEE Spectrum,

p. 32, June 1986.

[Welsh67] D. J. A. Welsh and M.B. Powell, “An Upper bound for the Chromatic Number

of a Graph and its Application to Timetabling Problems,” Comput. J., 10:85-86,

1967.

[White90] S. R. White and L. Comerford, “ABYSS: Architecture for Software

Protection,” IEEE Transactions on Software Engineering, Vol. 16, No. 6, pp.

619-629, June 1990.

[Wilson97] A. Wilson, “Software Security and the DirectPlay API,” Dr. Dobb’s Journal, pp.

66, April 1997.

[Xue94] J. Xue, “Edge-Maximal Triangulated Subgraphs and Heuristics for Maximum

 30

Clique Problem,” Networks, Vol. 24, pp. 109-120, 1994.

[Zhang97] X. N. Zhang, “Secure Code Distribution,” IEEE Computer, Vol. 30, No. 6, pp.

76-79, June 1997.

