
288 IEEE COMMUNICATIONS LETTERS, VOL. 2, NO. 10, OCTOBER 1998

Balancing Workload and Recovery Load on
Distributed Fault-Tolerant VOD Systems

Ing-Jye Shyu and Shiuh-Pyng Shieh,Member, IEEE

Abstract— This letter presents a new code sequence for
dispatching playback jobs among distributed video-on-demand
servers. The dispatch accordingly has the property of evenly
distributing workload among all servers and balancing recovery
load on surviving servers if one of the servers fails. In this
letter we give anO((n � 1)!) algorithm for efficiently finding a
dispatch sequence forn servers.

Index Terms—Fault tolerance, load balancing, VOD system.

I. INTRODUCTION AND MOTIVATION

FAULT TOLERANCE is considered to be an important
issue for the design of video-on-demand (VOD) systems.

This letter proposes a VOD system equipped with distributed
video servers which provide server-level fault-tolerant capa-
bility. Fig. 1 depicts a typical system consisting of distributed
VOD servers. Based on the system model, we present a
recovery scheme which can tolerate server failure [5]. The idea
is to allocate new playbacks on the surviving servers to refresh
the failed playbacks of a failed server. Aplayback stands
for a delivered video stream. Allocating a playback consumes
many system resources (including disk bandwidth, buffers, and
network bandwidth), therefore amerging technique is used
to minimize the recovery cost (the merging operation was
proposed by Golubchik [3]). If there exists another playback
which delivers an earlier frame of the same video on the
surviving server, the merging technique alters the progress
rates of both playbacks so that they can be merged within
a short time, and consequently the resources occupied by one
of the playbacks can be released. The time spent in merging
the two playbacks is determined by their distance. Therefore,
in terms of the recovery overhead and the merging latency, the
best candidate to perform the recovery is the video server with
a playback nearest to the failed one. The goal of our design
is to dispatch the playbacks to the distributed VOD servers
such that the workload and recovery load can be minimized
and evenly distributed among servers.

In order to provide the VOD services, one of the common
mechanisms is to deliver the video stream periodically by
offering staggered video start times [4]. Viewers are thus
guaranteed a dedicated video from the beginning within a
waiting time no greater than the difference between two
successive start times. With the consideration of workload

Manuscript received November 19, 1997. The associate editor coordinating
the review of this letter and approving it for publication was Prof. V. S. Frost.

The authors are with the Department of Computer science and Information
Engineering, National Chiao-Tung University, Hsinchu, Taiwan 30010, R.O.C.

Publisher Item Identifier S 1089-7798(98)08064-8.

Fig. 1. The architecture of a multiserver distributed VOD system.

(a)

(b)

Fig. 2. (a) The round robin dispatch. (b) The balancedN -cyclic dispatch.

balance, the problem of staggering video playbacks on a group
of video servers must be dealt with. An intuitive solution is
to dispatch playbacks with different start times to the video
servers in a round-robin manner. Fig. 2(a) gives an example
of the round-robin dispatch on a four-server system, in which
a video starts every 5 min. In Fig. 1, represents a playback
and a server. The round-round dispatch results in balanced
workload among the video servers.

The round-robin dispatch policy entails a drawback when
fault tolerance is of concern. When a server fails, all playbacks
on the failed server will be recovered through the recovery
schemes described in the previous context for reducing the
overheads. For example, in Fig. 2(a), assume thatfails,
playbacks , , , will be recovered by allocating

1089-7798/98$10.00 1998 IEEE

SHYU AND SHIEH: DISTRIBUTED FAULT-TOLERANT VOD SYSTEMS 289

temporary playbacks on , because has playbacks nearest
to these failed playbacks. This causes recovery load imbalance
because the recovery process, including the allocation of the
temporary playbacks and the computing powers to merge
playbacks, is solely performed by . However, if playbacks
are dispatched to servers according to the sequence 1, 3, 2,
4, 1, 2, 3, 4, 3, 1, 4, 2 instead of the round-robin manner,
as shown in Fig. 2(b); in the normal state, every server has
the same workload distribution as in the round-robin dispatch.
When a server failure occurs, e.g., fails, the temporary
playbacks for recovering failed playbacks, , and can
be allocated on servers 4, 3, and 1, and merged with, ,
and , respectively, such that the recovery load is minimum
and evenly distributed. This kind of the dispatch sequence
results in balanced workload both in the system normal state
and in the failed state. We refer to this dispatch sequence as
the Balanced n-Cyclic Code(B C code).

In Section II we present a heuristic algorithm for efficiently
finding a B C code in time for a given .
Section III shows the performance improvement with the
algorithm. Section IV summaries the problems that merit
further investigation.

II. HEURISTIC ALGORITHM

Balanced -Cyclic code is defined as a sequence which is
ordered to meet the following criteria: : be a cyclic code,

: be divisible into equal-sized segments, , such
that each segment consists of number 1 to, and : for
any two continuous elements in any two segments, i.e.,
= () and = (), if = , then

, where , and . We prove
in the Appendix that finding a BC code is a NP-complete
problem. Thus, we need an efficient algorithm to produce
B C sequences. In this section we present the find-BC-code
algorithm which can generate a BnC code from a B()C
code. The technique is to insert the numberinto some special
positions in the B()C code to form a BC code. Here we
use some terms from graph theory. The is a directed
edge from the vertex to the vertex . A Hamilton cycleis a
path that passes through every vertex exactly once and returns
to the start vertex.

Algorithm : Find-B C-code (Input: B()C code;Out-
put: B C code)

Begin
Step 1: Represent the input B()C code as a series of

connected arcs, (,), (,), (,
), in which is the th number in the B()C

code.
Step 2: Partition the arcs in Step 1 into groups

in which each group consists of arcs from
(,) to (,

), where .
Step 3: Select one arcs (,) from every such that all

are distinct, where .
Step 4: Step 3 produces combinations. For each

combination, two arcs (,) and (,) are
generated, where , ,

and
. Then check these arcs to see

whether they form a Hamilton cycle. If yes, go to
Step 5. Otherwise, go to Step 3 and try the next
combination. When all the combinations have been
tested and no Hamilton cycle is found, it means
that the algorithm cannot find a BC code from
the input B()C code.

Step 5: Extend the B()C code into a BC code by

a) inserting number at the place located at between
and in the B()C code, where (,) is

the arcs selected in Step 3 and .
b) concatenating the formed Hamilton cycle (Step 4) to

the tail of the B()C code to form a BC.

End
An example is given to illustrate the algorithm. Assume that

a B5C code is 1, 2, 3, 4, 5, 2, 4, 1, 3, 5, 3, 1, 4, 2, 5, 4, 3,
2, 1, 5 . Partition it into four arc groups, (1, 2), (2, 3),
(3, 4), (4, 5), (5, 2), (2, 4), (4, 1), (1, 3), (3, 5), (5, 3),

(3, 1), (1, 4), (4, 2), (2, 5), (5, 4), (4, 3), (3, 2),
(2, 1), (1, 5), (5, 1). By exploring the computations in Steps
3 and 4, we find that arcs (3, 4), (1, 3), (4, 2) and (5, 1)
(respectively selected from groups , , , and) as
well as two other generated arcs (6, 5) and (2, 6) can form
a Hamilton cycle 1, 3, 4, 2, 6, 5. We then insert number 6
into the B5C code at the positions between 3 and 4, 1 and 3,
4 and 2, and 5 and 1, then concatenate the formed Hamilton
cycle 1, 3, 4, 2, 6, 5 to its tail. The B6C code thus obtained
is 1, 2, 3, 6, 4, 5, 2, 4, 1, 6, 3, 5, 3, 1, 4, 6, 2, 5, 4, 3, 2,
1, 5, 6, 1, 3, 4, 2, 6, 5.

Step 5a) extends the B()C code by removing arc
and inserting arcs and . Since the

inserted arcs and are disjoint for all
, and the removed arcs are also disjoint from

the inserted B()C code, the code formed by Step 5b) is
a B C code. In Step 4, the worst case of finding a successful
combination needs iterations, so the complexity for
finding a B C code is . However, the heuristic
algorithm may fail to find a BC code from some B()C
code. In this case, we can generate another B()C code as
a seed to repeat the above procedures.

III. PERFORMANCE EVALUATION

We have developed a program that uses the above B5C
code as a seed to find other BC codes. The B5C seed is
generated by exhausting all the combinations. Our experiments
showed that our heuristic approach can find a BC code much
faster than the exhausting search. Table I shows the time
needed for searching a BC code by comparing the exhausting
search with the find-BC-code algorithm running on an Intel
Pentium-90 machine.

IV. CONCLUSIONS

The playback dispatch according to a balanced-cyclic
code has two merits: 1) the balanced workload distribution
among video servers and 2) the balanced recovery load distri-
bution among surviving servers while some video server fails.

290 IEEE COMMUNICATIONS LETTERS, VOL. 2, NO. 10, OCTOBER 1998

TABLE I
RESULTS OF THE COMPARISON

Exhausting Search
Find-BnC-Code

Algorithm
B6C �

= 4.5 hours � 0.1 s
B7C �

= 17.2 hours � 0.1 s
B8C - � 0.1 s
B10C - � 0.1 s
B20C - �

= 0.1 s
B30C - �

= 0.5 s
B40C - �

= 295 s
B50C - �

= 745 s
-: more than one day

However, the configuration after tolerating a server failure can
no longer provide balanced recovery load distribution while a
second server failure occurs. In the near future, we hope to
find a special code sequence which makes the recovery load
distribution near balanced while recovering the second or more
server failures.

APPENDIX

Theorem 1: For any odd , a B C code exists and finding
it is an NP-complete problem.

Proof: A complete graph with vertices is a graph of
degree . According to related theorems [1], [2], [6], if

there exists an algorithm that can effectively find
disjoint Hamilton cycles for a complete graph with odd-n
vertices, we can find disjoint Hamilton cycles for a
complete symmetric digraph. These disjoint Hamilton
cycles can be concatenated into a BC code. Thus the problem
of finding disjoint Hamilton cycles for a complete
graph with minimal degree is reducible to the problem of
finding a B C code when is odd. We can conclude that a
B C code exists for any odd, and also that finding a BC
code is an NP-complete problem.

REFERENCES

[1] B. Bollobas and A. M. Frieze, “On matchings and Hamiltonian cycles
in random graphs,”Ann. Discrete Math., vol. 28, pp. 23–46, 1985.

[2] B. Bollobas, T. I. Fenner, and A. M. Frieze, “An algorithm for finding
Hamilton paths and cycles in random graphs,”Combinatorica, vol. 7,
pp. 327–341, 1987.

[3] L. Golubchik, C. S. Lui, and R. Muntz, “Adaptive piggybacking: A
novel technique for data sharing in video-on-demand storage servers,”
Multimedia Syst., vol. 4, no. 3, pp. 140–155, 1996.

[4] T. D. C. Little and D. Venkatesh, “Popularity-based assignment of
movies to storage devices in a video-on-demand system,”Multimedia
Syst., vol. 2, no. 6, pp. 280–287, 1995.

[5] I. J. Shyu and S. P. Shieh, “Distributed fault-tolerant design for multiple-
server VOD systems,”Multimedia Tools Appl., to be published.

[6] , “The load-balanced playback dispatch for fault-tolerant multi-
server VOD systems,” inProc. 3rd Workshop on Real-Time and Media
Systems, Taipei, Taiwan, R.O.C., pp. 165–170, 1997.

