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Abstract —Operational security problems, which are often the result of
access authorization misuse, can lead to intrusion in secure computer
systems. We motivate the need for pattern-oriented intrusion detection,
and present a model that tracks both data and privilege flows within
secure systems to detect context-dependent intrusions caused by
operational security problems. The model allows the uniform
representation of various types of intrusion patterns, such as those
caused by unintended use of foreign programs and input data,
imprudent choice of default privileges, and use of weak protection
mechanisms. As with all pattern-oriented models, this model cannot be
used to detect new, unanticipated intrusion patterns that could be
detected by statistical models. For this reason, we expect that this
model will complement, not replace, statistical models for intrusion
detection.

Index Terms —Access misuse, audit analysis, context-dependent
intrusion, intrusion detection, operational security problems, statistical
methods, rule-based methods, secure systems.

————————   ✦   ————————

INTRODUCTION

COMPUTER system intrusion typically occurs as a result of either
system penetration or misuse of access authorization. In principle,
access control and authentication mechanisms can provide the
penetration resistance necessary to prevent illegitimate access by
unauthorized users. In contrast, intrusion resulting from misuse of
access authorization can be prevented by neither authentication
nor access control since unauthorized access need not be at-
tempted. Instead, this type of intrusion must be detected by after-
the-fact analysis of audit trails, that is, by intrusion detection.
However, real-time analysis of audit trails is often impractical
because of the substantial overhead added by audit-trail analysis
to system performance [1].

Most intrusion-detection methods proposed to date can be
categorized as either statistical or rule-based methods. Statistical
methods define intrusion patterns as statistical deviations from an
activity profile that characterizes “typical” access behavior of a
given subject (i.e., user or process) or group of subjects with re-
spect to a given object (e.g., a file, a directory) or group of objects
[7], [8], [9], [12], [13], [14], [20]. Activity profiles attempt to capture
statistically the normal access activity of subjects during a given
period of system operation. A key advantage of these methods is
that intrusion patterns need not be defined explicitly, thereby ena-
bling detection of new, unanticipated intrusion patterns. A key
disadvantage of these methods is that they are generally unable to
adapt easily to changes of subject behavior; e.g., changes legiti-
mately caused by the use of new applications.

Rule-based methods detect intrusion patterns based on se-
quence of events [3], [16], [17], [20]. These methods share the dis-

advantage of statistical methods as they define intrusion patterns
in terms of audit records that cannot be easily adapted to changes
of subject behavior. To mitigate this disadvantage, Teng, Chen,
and Lu proposed a method which uses sequential rules that are
dynamically generated and modified by a time-based, inductive
engine to define expected user-activity profiles [19]. More recently,
Ilgun, Porras, and Kemmerer proposed a method which defines
intrusion as a sequence of state changes that take the computer
system from some initial state to a target compromised state, and
requires the analyst to identify the minimum number of actions to
reach this state [11]. Although both these methods improve adapt-
ability to changing subject behavior, they do not track data and
privilege flows between subjects and objects. As a consequence,
intrusion occurrences may remain undetected when they include
sequences of events in which both the size of the subject and object
sets, and the length of the sequence itself, vary in time.

In general, both rule-based and statistical methods are rather
insensitive to occurrences of context-dependent intrusions with
illegal data and privilege flows, such as those characterizing un-
intended use of foreign programs or virus propagation. Insensi-
tivity to context-dependent intrusion may lead to failure to detect
some intrusion instances and may cause false alarms to be raised.
This limitation is shared by all intrusion-detection methods that
ignore the meaning and significance of event sequences in defin-
ing intrusion patterns.

In this paper, we present a pattern-oriented, intrusion-detection
model, discuss some of its salient properties, and illustrate its ap-
plications with an example. (Further examples and analysis are
provided elsewhere [15].) The model presented here is inspired by
the use of the Take-Grant model [6], [18] and the U-KUANG rule-
based tool [2] for static analysis of system protection states, where
a system protection state is defined by the current setting of the
access control matrix; e.g., for the static determination of whether a
subject can potentially acquire extra object privileges or data. How-
ever, in contrast to the Take-Grant model and the U-KUANG tool,
our model captures the dynamic, potential flows of privileges and
data, thereby enabling the definition and discovery of specific
intrusion patterns in audit trails. In particular, our model helps uni-
formly define patterns of data and privilege flows that characterize
operational security problems caused by misuse of access authoriza-
tion in otherwise secure systems. These problems include those of

1) unintended use of foreign programs,
2) unintended use of foreign input data,
3) imprudent choice of default privileges, and
4) use of weak protection mechanisms.

However, as is the case with any model that requires explicit defi-
nition of intrusion patterns, our approach detects only intrusions
that can be anticipated prior to their occurrence. For this reason,
pattern-oriented intrusion detection is intended to complement,
not replace, statistical approaches for intrusion detection.

The balance of this paper is organized as follows. In Section 2,
we present several examples of operational security problems of
secure systems that help motivate the pattern-oriented approach
to intrusion detection. Section 3 contains a succinct definition of
the model and its salient properties. Section 4 illustrates an appli-
cation of this model for the detection of unintended use of foreign
programs.

2 OPERATIONAL SECURITY PROBLEMS

Operational security problems arise from complex interactions
between the pieces of a computer’s protection system and users,
and can be eliminated neither by use of access control and authen-
tication mechanisms nor by administrative measures; e.g., prob-
lems caused by imprudent use of object privileges, inadequate
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setting of name-resolution variables, or execution of foreign pro-
grams that may contain Trojan Horse or virus codes. These prob-
lems arise independent of the level of security assurance of, and
policy employed by, a computer system, and may be caused by
both privileged, administrative users and unprivileged, casual
users. We present four of the many types of operational problems
leading to context-dependent intrusions that suggest the use of a
pattern-oriented approach to intrusion detection. These problems
are illustrated using the Unix system mechanisms and services.
However, it should be clear that these problems are not specific to
Unix; instead, they are fairly typical of all current multiuser oper-
ating systems.

2.1 Unintended Use of Foreign Programs
The unintended use of foreign programs is a common operational
problem in many operating systems, such as Unix. This problem
can be caused by failure to set and reset the environment variables
[4], [5]. The following two examples illustrate the problem.

2.1.1 Command Search Paths}PATH
In Unix systems, an internal variable PATH for command search
path in the shell (command interpreter) defines the order of direc-
tories being searched to find a command [4]. The unintended use
of foreign programs can be caused by inadequate setting of the
user’s command search paths. Two types of problems may arise:

1) a user may execute an intruder’s version of a system com-
mand instead of the intended system command whenever
the user’s command search paths start from the current di-
rectory; and/or

2) a user may execute a system command instead of the in-
tended user program if the user’s search paths start from a
system command directory.

These two problems cannot be easily resolved because:

1) it is undesirable to require users to type full path names for
every program execution, and

2) it is unrealistic to expect all users understand the effects of
the search-path setting on their executed programs.

2.1.2 Word Separators for Commands}IFS
Similar problems appear when environment variables IFSs are not
carefully set or reset by users. In Unix systems, an environment
variable IFS is used to define a list of characters representing word
separators for commands whenever the Bourne shell sh (a com-
mand interpreter) is used. If IFS is set to “o,” the shell command
show (which prints mail messages on the screen) is treated as the
command sh with one argument w (since the “o” is treated as a
blank). Thus, whenever an unsuspecting user fails to set or reset
IFS, another user may set up a file w, which can include command
programs under the control of the latter user.

Similar problems appear if aliases are not carefully set or reset
by users when used within Unix commands.

2.2 Unintended Use of Foreign Input Data
Misuse of environment variables that causes unintended use of
foreign programs can also cause unintended use of foreign input
data. However, more subtle instances of unintended use of foreign
data also appear in Unix systems. For example, a miscreant user
may exploit the fact that directories /tmp and /usr/tmp provide a
writable repository for the creation of temporary files by system
programs like the C compiler, cc(1). Since these directories must be
readable and writable by everyone, a miscreant user can remove
any or all files saved there and replace them with his own files.
cc(1) may take these intermediate files as unintended input and
generate (unintended) executable files. The resulting operational
problem is that an unsuspecting user may end up using bogus

input data and programs with the same effects as those of unin-
tended use of foreign programs.

2.3 Imprudent Choice of Default Privileges
Operating systems, such as Unix, allow users to define default
object privileges. For example, a user may set his default-privilege
mask to allow:

1) all privileges for the owner,
2) read-write privileges for a specified group of users, and
3) read privilege for all other users, whenever he or she creates

an object.

Object privileges can be subsequently modified to accommodate
the needs of different sharing patterns. For example, the user ed-
iting a sensitive document stored in a file may modify the file’s
privileges to allow read-only privileges for the group and no-
privileges for other users. Suppose, however, that an editor run-
ning with the user identity, creates a new temporary file (which
has the default privileges set by the user mask), copies the contents
of the original file in it, edits it, destroys the original file, and re-
names the temporary file with the name of the original file. The
unsuspecting user appears now to have granted read access to all
other users, perhaps contrary to the wishes of the group members;
also, the group members gain inadvertently write access to the
document file, perhaps contrary to the unsuspecting user’s wishes.
In this context, subsequent read access to the document file exer-
cised by the other users and write access exercised by the group
represents an intrusion. The use of unsafe object-privilege defaults
is a very common operational security problem in most (secure)
systems.

2.4   Use of Weak Protection Mechanisms
Compatibility with existing system interfaces requires retention
of protection mechanisms visible at a system interface even
when these mechanisms are demonstrably weak or unsafe. The
setuid/setgid system calls of Unix systems, which are intended to
help implement protected subsystems, represent a good example
of this requirement. Hypothetically, a secure system would not use
such mechanisms within its trusted programs but, nevertheless,
would retain them for discretionary use by various applications. In
such a system, a user may (un)intentionally call a foreign program
that creates a setuid file with the user’s identity, unbeknownst to
the user. The effect of this seemingly innocuous create-file call is
that the owner of the foreign program, which would be granted
read and write privileges on the file, could copy to, and run pro-
grams from, that file under the user’s identity. The resulting op-
erational problem, namely the ability of a user to masquerade as
another user, cannot be avoided easily because casual users often
lack the ability or permission necessary to discover the potential
use of setuid like calls by untrusted application code. Additional
operational problems caused by the use of the setuid mechanism
and their solutions are described elsewhere [4], [5], [10].

The above examples show that seemingly innocuous access
patterns may, in fact, represent intrusion patterns whenever they
appear in the context of specific sets of subjects and objects.

3 THE INTRUSION-DETECTION MODEL

In this section, we provide a succinct definition of the intrusion
detection model by formally defining system states and state tran-
sitions in terms of direct relations, and rules that establish indirect
relations between subjects and objects. System states are captured
in audit trails and are represented by a protection graph. A protec-
tion graph has two distinct types of vertices: subjects and objects.
Subjects are the active vertices that represent processes and users;
they initiate operations that cause data and privileges to flow
among subjects and object. Objects, on the other hand, are com-
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pletely passive; they represent data containers such as files and
directories, and cannot initiate operations nor data and privilege
flows. Because all system events can be interpreted as different
types of data and privilege flows, intrusion events can be formally
defined in terms of data and privilege flows. However, some data
and privilege flows represent only potential, not actual, flows.
Whether an actual flow takes place is undecidable because flows
are both call-argument and system-state dependent, not just op-
eration-dependent. Hence, some intrusions may represent only
potential, rather than actual, intrusions.

3.1 System States
A system state is defined by a directed protection graph
G(V, E, C, F), which is a structure consisting of a set of vertices,
V, a set of labeled edges, E, a set of protection sets, C, and a legal-
flow matrix, F.

The set of vertices V consists of subjects and objects. A subject si
is graphically represented by the symbol

and an object oi is represented by the symbol

in the protection graph. A vertex vi, vi P V that can be either a
subject or an object is represented by

Each directed edge ei P E connects elements of an ordered pair of
vertices (u, v), and is labeled with subsets of a finite relation set R,
where R = {r, w, cb, d, Ir, Iw, Icb, Id, r*, w*, cb*, d*, Ir

* , Iw
* , Icb

* , Id
* }.

(When written as labels on a graph, the set braces of relations are
normally omitted.) Symbols r, w, d, and c represent present read,
write, drive, and control relations, respectively, whereas symbols Ir,
Iw, Ic, Id represent indirect relations originally derived from direct
relations r, w, d, and c. Alternatively, we use symbols rb, wb, db,
and cb to denote read-by, written-by, driven-by, and controlled-by,
respectively. Symbol * denotes the past unary operator, which is
used to distinguish the relations of two epoches, namely, the past
and the present. The “present relation” is provided by the access
operation under current consideration, and can be interpreted as
the latest event (e.g., write event) read from the audit trail or as an
continuing event (e.g., execute event) that was invoked before the
latest event. All access operations performed before the present
access operations are past operations.

The basic subject accesses to objects can be defined as a set of
direct and indirect relations between subjects and objects, and di-
vided into two classes of accesses depending on whether the ac-
cesses cause a potential flow of object data or of privileges. Read
and write relations are introduced to capture the potential flow of
object data. A subject has a (direct) read relation with every object it
reads, and a (direct) write relation with every object it writes. A

subject si  that reads/read an object om is represented by the relation

r(si, om)/r*(si, om), or graphically,

Similarly, a subject sm that writes/wrote an object on is represented

by the relation w(sm, on)/w*(sm, on), or graphically,

Two other basic relations, namely control and drive, are intro-
duced to capture the potential flow of object privileges. The con-
trol relation is used to detect the execution of malicious programs

(e.g., programs containing Trojan Horses) by unsuspecting sub-
jects, whereas the drive relation is used to detect instances
whereby malicious subjects (e.g., the creators of malicious pro-
grams) can force unsuspecting subjects to execute malicious pro-
grams. A subject is (directly) controlled by an object whenever the
subject executes the object; e.g., a process that executes a Unix

command ls is controlled by ls. A subject si that is/was controlled

by an object om is represented by relation cb(si, om)/cb*(si om), or
graphically,

A subject (directly) drives another subject whenever the former
provides a command (or program) to be executed by the latter;
e.g., whenever a parent process creates a child process to execute
command ls, the child process is driven by its parent process (and
is controlled by ls). A subject sm that drives/drove a subject si is
represented by relation d(sm, si)/d*(sm, si), or graphically,

We note that the drive relation differs from the control relation
because the controlling object provides the controlled subject with
a sequence of instructions for execution and, thus, the control re-
lation usually lasts for a period of time. In contrast, the the drive
relation is an instantaneous operation, as the driving subject only
provides the driven subject with the command or program to be
executed.

A protection set Ci P C defines the set of all subjects and objects
that require protection from intrusion by outside subjects, and is
associated with each user. Object data and privileges are allowed
to flow freely within a protection set at its owner discretion, how-
ever, inward and outward flows of a protection set should be re-
stricted. For example, all processes and files owned by the
“superuser” of a Unix system should form a protection set, and all
processes and files of an unprivileged user should also form a
protection set. That is, these subjects and objects should be in-
cluded in their owner’s protection set so that they can be protected
from other users. Similarly, all subjects and objects of a protected
subsystem should be protected from other users and, therefore,
should be included in that subsystem’s protection set.

The legal-flow matrix, F, with rows and columns corresponding
to protection sets, defines the flow policy (e.g., restrictions) of the
secure system. An entry F(c1, c2) lists the legal data and privilege
flows from c1 to c2, thereby helping distinguish between intrusions
and legal accesses. An access is legal if all the incurred potential
flows are permissible in F. If any of the potential flows incurred
are illegal in F, the access represents an intrusion. For example, an
indirect data flow from an unprivileged user to a system com-
mand (owned by the superuser) violates F and thus is illegal.

The legal-flow matrix can capture the data and privilege flows
of a variety of security policies [15]. However, the representation
of these policies via a two-dimensional matrix is generally im-
practical due to the sparseness of the matrix.1 Instead, the policy
captured by the matrix flows can be represented as a set of rules
that define either legal or illegal flows between subjects and ob-
jects. For example, a rule may prohibit any “superuser” process
from directly or indirectly executing a file owned by ordinary us-
ers; another rule may prohibit the direct or indirect writing of a
user’s sensitive files (e.g., setup files.login, .cshrc in Unix) by other
users; and, yet another rule, may prohibit data flows (read or
write) from a high security level to a low security level.

1. Efficient representation of the legal-flow matrix may also be ham-
pered by the fact that the flow policy might be neither transitive nor
symmetric. For example, it is common that a flow policy allows the
flows from a to b and b to c but not a to c or b to a, respectively.
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In summary, a system state is defined by the present data and
privilege flows and, whether a state is intrusion-free, is deter-
mined by the protection set and legal-flow matrix.

3.2   State Transitions
In our model, state transitions are caused by present access op-
erations. A present access operation that occurs between two
vertices v1 and v2 is denoted by present_relation(v1, v2), where
present_relation P {r, w, d, cb}. We define the present relations in
terms of r, w, d, and cb since most known intrusion patterns can be
characterized by these four types of data and privilege flows.

In our model, a state transition of the system is formally de-
fined as

T: Lc × G → G × D,

where Lc is the set of present relations V × A × V, A = {r, w, cb, d},
and D is the set of exception-condition results {yes, no}. A “yes”
indicates that intrusion patterns have been identified.

To determine whether an intrusion pattern occurred during
a state transition, all indirect relations of the system state must
be derived. This derivation is effected using Rules 1-4 defined
below. Each of these rules includes two relations, at least one

of which is a present direct relation; e.g., r(sn, oi) in Rule 1, w(si, on)

in Rule 2, cb(sn, oi) in Rule 3, and d(si, sn) in Rule 4 are present
direct relations. Rules 1 to 4 provide a complete set of inference
rules that provide all indirect relations for the four types of
indirect potential data or privilege flows. These rules form a
minimal set because each rule covers a single type of indirect
relation and none of these rules can be removed. In the graphic
definition of these rules, the symbol ` is used to represent that

the graph following this symbol is produced by all the graph-
rewriting rules on the graph preceding it.

Given a subject and an object, the subject has an indirect read
relation with all subjects and objects that provided input to a write
operation on that object. Indirect read is represented by the relation
Ir/ Ir

* (si, vm), or graphically,

if a subject si indirectly reads/read an object (or a subject) vm. Indi-
rect read is achieved through the following sequences of relations:

RULE 1. w*/ Iw
* (vm, oi) Ù r(sn, oi) Þ Ir(sn, vm), or graphically,

A given subject/object has an indirect write relation with all ob-
jects that are written by other subjects which executed, or took
input from, that subject/object. Indirect write is represented by the
relation Iw/ Iw

* (vm, on), or graphically,

if a subject (or object) vm indirectly writes/wrote an object on. Indi-
rect write is achieved through the following sequences of relations:

RULE 2. r*/ Ir
* /cb/Icb(si, vm) ` w(si, on) Þ Iw(vm, on), or graphically,

A subject is indirectly controlled by another subject/object, if the
latter directly or indirectly wrote an object that directly controls
the former. Indirect controlled-by is represented by the relation
Icb/ Icb

* (si, vm), or graphically,

if a subject si is/was indirectly controlled by an object (or subject) vm.
Indirect controlled-by is achieved through the following sequences
of relations:

RULE 3. w*/ Iw
* (vm, oi) ` cb(sn, oi) Þ Icb(sn, vm), or graphically,

A given subject is indirectly driven

1) by another subject/object, if the latter directly or indirectly
controls a subject that directly drives the former, or

2) by another subject/object, if the latter directly or indirectly
drove a subject that directly drives the given subject.

Indirect drive is represented by the relation Id/ Id
* (vm, si), or

graphically,

if a subject (or object) vm indirectly drives/drove a subject si, that is, if
vm provides the next command to be executed by si. Indirect drive
is achieved through the following sequences of relations:

RULE 4-1. cb/Icb(si, vm) ` d(si, sn) Þ Id(vm, sn), or graphically,

RULE 4-2. d*/Id*(vm, si) ` d(si, sn) Þ Id(vm, sn), or graphically,

Rules 1-4 above include specific sequencing of the present di-
rect relations to capture data and privilege flows among subjects
and objects. Relation sequencing is based on relation ordering and
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concurrency. Two access relations are ordered if one occurs before
the other. For example, if indirect relation L1 occurs before relation
L2, then L1 finishes before L2 starts; i.e., every single direct access
relation that causes L1 occurs before the any access of L2 starts.
Two access relations are concurrent, or simultaneous, if neither
occurs before the other. For example, the read and control rela-
tions are concurrent if a user reads a file while executing a
program.

To understand the significance of relations sequencing, con-
sider the application of Rules 1 and 3 to two processes that share a
file. If process 1 writes the file before process 2 reads it, or is con-
trolled by it, process 2 has an indirect read, or controlled-by, rela-
tion with process 1; and, also, process 1 has an indirect write rela-
tion with any object written subsequently by process 2. However,
if process 1 writes the file after process 2 reads it, an indirect rela-
tion (i.e., a data or privilege flow) cannot be established between
the two processes. For similar reasons, the indirect write and drive
relations of Rules 2 and 4 require that

1) the controlled-by and write relations occur concurrently (viz.,
Rule 2), and

2) the controlled-by and drive relations also occur concurrently
(viz., Rule 4); e.g., an indirect write/drive relation exists
between a program and a file if a process writes/drives the
file when executing the program.

Rules 1-4 above apply only to a present direct relation and its
adjacent relations (i.e., relations with which it shares a vertex).
Also, in any state, the past direct and indirect relations are distin-
guished from the present direct relations (viz., Section 3.1). Hence,
to discover all new indirect relations, and thereby to determine the
next system state, we only need to

1) apply Rules 1-4 to the relations that are adjacent to present
direct relations, and

2) to update the past/present status of each direct and indirect
relation when transiting to each new system state.

4 AN APPLICATION OF THE INTRUSION-DETECTION
MODEL

In this section, we illustrate the detection of unintended use of a
foreign program by using our model. Other applications, such as
detection of virus propagation, can found elsewhere [15]. This
example illustrates the effect of the execution of an intruder’s pro-
gram, instead of the intended system command, by an unsuspect-
ing user.

In Unix, user applications often access the /tmp directory,
which can be read, written and executed by every user in the sys-
tem. This implies that, for example, a user (identified below as the
Intruder) may deliberately leave a program named ls in directory
/tmp, and then change the owner of /tmp/ls to another identity
(denoted by ssp below) so that his real identity cannot be discov-
ered later. Subsequently, an unsuspecting user (identified below as
the Victim) may change his current directory to /tmp and attempt
to list current directory contents by using (what he believes to be
the system-provided command) ls. If the Victim’s first search path
is set to the current directory, then the bogus version of ls gets
executed instead of the system command ls. Thus, the bogus ls can
acquire all the Victim’s privileges, thereby controlling all his ac-
tivities and allowing the Intruder to (albeit indirectly) write over
the unsuspecting user’s sensitive objects; e.g., setup files .login
and .cshrc. In this context, these seemingly normal actions of the
bogus ls program represent intrusions. Note that the mere exe-
cution of the bogus program ls cannot be treated as an intrusion
pattern independent of its context of use. As long as this execu-
tion does not cause any harm to the invoker’s sensitive objects, it
cannot be considered to be an intrusion. However, an alarm

must be raised when the Intruder indirectly writes the Victim’s
setup file .login, which would undoubtedly represent a violation
of the legal flows in F.

The Intruder’s actions may be summarized as follows:

$cp I_write /tmp/ls
$chmod 0111 /tmp/ls
$chown ssp /tmp/ls

The Victim’s actions may be summarized as follows:

$cd /tmp
$ ls

The contents of the /tmp/ls file created by the Intruder are shown
in the Appendix. The command

”set path =
(.$HOME/bin /bin /usr/bin /usr/security/bin /etc)”

is a typical command found in users’ .cshrc files on Unix-like sys-
tem to set up a user’s command search paths. After the execution
of program /tmp/ls, the Victim’s command search paths in his
$HOME/.cshrc is changed to

”set path =
(/tmp.$HOME/bin/bin/usr/bin/usr/security/bin/etc)”

and a new line “/tmp/ls” is appended to the end of $HOME/.login.
Thus, both .cshrc and .login files of the Victim can be affected by
the Intruder.

As the consequence of the commands invoked by the Intruder
and Victim, the following events can be selected from audit trails:

This sequence of events is interpreted by our model as the se-
quence of protection graphs shown below. At time 10:01, process
111 (owner Intruder) writes into /tmp/ls, which is interpreted as
w(111, /tmp/ls), shown in the following graph.

At time 11:01, process 222 (owner Victim) starts being controlled
by /tmp/ls. For simplicity, the previous object executed by process
222 is not shown in the graph. The direct-write relation between
process 111 and /tmp/ls is a past relation because the operation
occurred in the past. By Rule 3, a new indirect controlled-by rela-
tion between processes 111 and 222 can be derived from the direct
controlled-by relation between process 222 and /tmp/ls, as shown
in the following graphs. The indirect controlled-by relation cannot
be treated as an intrusion pattern, because it is normal for a user to
execute a shared program as long as the execution does no harm to
the invoker’s sensitive objects.
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At time 11:02, process 222 writes data into $HOME/.login. By
Rule 2, a new indirect-write relation between process 111 and
$HOME/.login and a new indirect-write relation between /tmp/ls
and $HOME/.login can be derived. The new indirect write rela-
tion between process 111 and the Victim/.login represents a data
flow from a malicious user to a victim’s sensitive files. This flow
would be defined to be illegal in F, since it is reasonable to prohibit
other users to directly or indirectly write a user’s sensitive file.
Therefore, an intrusion instance occurs:

At time 11:03, process 222 writes data into $HOME/.cshrc. By
Rule 2, a new indirect-write relation between process 111 and
$HOME/.cshrc and a new indirect-write relation between /tmp/ls
and $HOME/.cshrc can be derived. The new indirect write rela-
tion between process 111 and the Victim/.cshrc represents another
intrusion instance:

5 CONCLUSION

In this paper, we presented a pattern-oriented, intrusion-detection
model that can track both data and privilege flows within secure
systems. The key advantage of this model is its ability to charac-
terize context-dependent patterns of intrusion, such as those pres-
ent in unintended use of foreign programs. The use of this model
has the potential to give better performance than the statistical
approaches for detecting context-dependent intrusions because it
focuses on specific patterns and, consequently, avoids analysis of
all audit data for a large number of statistical profiles. However, as
with all pattern-oriented models, it has the limitation that it can
detect neither new, unanticipated intrusion patterns, nor patterns
that can only have statistical characteristics.

The open problems of statistical approaches pointed out by
Denning [8] are also relevant for pattern-oriented approaches; i.e.,
generation of false alarms and missed real intrusions. Although
our model can be used to detect all intrusions whose patterns are
defined, it is possible for an intruder to escape detection whenever
the intruder uses an unknown pattern. It is also possible that a
potential data or privilege flow may not cause an actual flow.
However, because pattern-oriented approaches, such as ours,
complement statistical approaches, we anticipate that practical
intrusion-detection systems will rely on both the pattern-oriented
and the statistical approaches thereby combining the advantages
of both.

APPENDIX

The intrusion program /tmp/ls may have the following contents:

/***************************************************************
*PROGRAM NAME: ls
* PATH: /tmp/ls
* FUNCTION:
* 1. indirectly write to $HOME/.login & $HOME/.cshrc
* 2. list the names of files in a directory
***************************************************************/
#include <stdio.h>
#include <fcntl.h>
#define FAIL −1
#define LENGTH            20
char temp1[6] = ”/tmp ”, temp2[6];
char token[11]=”set path=(”;
int fd1;
main(argc, argv)
int argc;
char *argv[];
{

int fd, n, i;
char buff[BUFSIZ], path[LENGTH], *ptr, *getenv();

/*get owner’s $HOME dir*/
if((ptr = getenv(”$HOME”)) == NULL)exit(−1);

strcpy(path, ptr);
/*get pathname of owner’s.login*/

strcat(path, ”/.login”);
if((fd = open(path, O_RDWR | O_CREAT |

O_APPEND, 0666)) == FAIL)exit( −1);
chmod(path, 0666);

/*change the search path for commands in $HOME/.cshrc*/
strcpy(path, ptr);
strcat(path, ”/.cshrc”);
if((fd1 = open(path, O_RDWR | O_CREAT,

0666)) == FAIL)exit( −1);
chmod(path, 0666);
change_path();
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/*append a command to $HOME/.login*/
write(fd, ”/tmp/ls”, 7);

/*execute the intended ls command*/
execv(”/bin/ls”, argv);

}

change_path()
{

int i, n;
lseek(fd1, 0L, 0);
if(search_token() == 0){

while((n = read(fd1, temp2, 5)) == 5){
lseek(fd1, −5L, 1);

write(fd1, temp1, 5);
for(i = 0; i < 5; i ++)temp1[i] = temp2[i];

}
lseek(fd1, −1L*(long)n, 1);
write(fd1, temp1, 5);
write(fd1, temp2, n);
}
else write(fd1, “set path = (/tmp. /bin)”, 17);

}
/*search token “set path = (“*/
search_token()
{

int i = 0;
char c;
while(read(fd1, &c, 1)! = 0){

if(c == token[i ++]){
if(i == 10)return(0); /*size of token*/

}
else i = 0;

}
return(−1);

}
/**********************************************************/
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