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Abstract 

An (m, n) threshold scheme is to decompose the master key K into n secret shadows in such a way that the 
master key K cannot be reclaimed unless any m shadows are collected. However, any m - 1 or fewer shadows 
provide absolutely no information about K. In 1989, Laih et al. proposed the concept of dynamic threshold schemes 
which allow the master key to be updated without changing the secret shadows. However, the perfect dynamic 
threshold scheme, which provides perfect secrecy though the master key is allowed to be changed, has not been 
proposed. Nor has any paper shown the existence of perfect dynamic threshold schemes. In this paper, we prove that 
perfect dynamic threshold schemes do not exist when their master keys need be updated [log, 19 1 /log, 13 I] times 
or more without changing the secret shadows, where P’ is the secret shadow space and 3 is the master key space. 
Furthermore, we propose an perfect dynamic threshold scheme which allows its master key to be updated once 
without changing the secret shadows. 
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1. Introduction 

Because of the proliferation of computers into areas such as electronic mail, electronic fund transfers, 
etc., the question of protecting important information from being compromised, destroyed, or transmit- 
ted into wrong hands has received a lot of attention in recent years. While public-key and private-key 
cryptosystems provide ways to protect information [6,71, a different type of protection schemes, the 
threshold schemes, were introduced by Blakely and Shamir in 1979 [1,81. The threshold schemes are 
mainly used to protect the master keys of a secure system from being lost, destroyed and modified. The 
main idea underlying an (m, n) threshold scheme is to divide the top secret (master key) K into IZ 
shadows S,‘s (1 G i G n) in such a way that the top secret K cannot be reclaimed unless m shadows are 
collected. However, any m - 1 or less secret shadows provide no information about K. It means that the 
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prior probability P(K = K,) equals the conditional probability p(K = K, I given any m - 1 or less secret 
shadows). 

By using the entropy function H from [3], we can state the requirements for an (m, n) threshold 
scheme as follows: 

(1) H(K IS. , Sim> = 0, 
(2) H(K IS;:::::, Si _,> = H(K), 

for an arbitrary set of “m indices ii/,. . . , i,} from 11,. . . , n}. 
As an example, we review the Cm, n) threshold scheme proposed by Shamir [8] as follows. 
Let f(~)=a,_,~x~-~+ .*. +a, .x + a, (mod p) be a polynomial of degree m - 1 over the finite 

field GF(p). The IZ shadows S,‘s are computed from f(x) as follows, 

Si =f(i) (mod p), i = l,.. .,n. 

The master key K is given by: K = a, = f(0). 
Obviously, given any m secret shadows S,,, . . . , Si,, {iI,. . . , i,) c 11,. . . , n), f(x) can be reconstructed 

from the Lagrange interpolating polynomial as follows [2], 

(mod P). 

Thus, the master key K can be obtained by f(O). 
In the conventional threshold schemes, the corresponding shadows must be updated accordingly when 

the master key is renewed for security reasons. Obviously, it is time-consuming and inconvenient if 
master keys change frequently, especially when the number, n, of the secret shadows is large. In 
particular, if the possibility of the master keys being compromised is not due to the disclosure of the 
shadows, it is not required to change these shadows when the master key is renewed. In 1989 [5], Laih et 
al. proposed the concept of dynamic threshold scheme in which the master key can be renewed while the 
originally issued secret shadows remain intact. In their paper, they proposed a relative dynamic threshold 
scheme of which the secrecy decreases as the number of changes to the master key increases. However, 
the perfect dynamic threshold scheme which provides perfect secrecy has not been realized. In this 
paper, we will first show that the perfect dynamic threshold scheme does not exist if the master key need 
be updated [log, I Y I /log, I Z I] times or more, where 9 is the secret shadows space and 3 is the 
master key space. It implies that there does not exist any perfect dynamic threshold scheme in which the 
master key can be updated for infinite times without modifying the secret shadows. Second, we will 
propose an perfect dynamic threshold scheme in which the master key can be updated once without 
changing the secret shadows. In Section 2, we will give formal definitions of the dynamic threshold 
scheme and the perfect dynamic threshold scheme. In Section 3, we will discuss the existence of perfect 
threshold schemes. In Section 4, we will demonstrate how to construct an perfect dynamic threshold 
scheme in which the master key can be updated once while not changing the secret shadows. Finally, we 
will give the conclusions in Section 5. 

2. Dynamic threshold scheme 

In this section, we define the dynamic threshold scheme and the perfect dynamic threshold scheme. 

Definition 1. An (m, ~1, T) dynamic threshold scheme (DTS) is an Cm, n) threshold scheme in which the 
newly created master key K can be updated up to T - 1 times without modifying any secret shadows, and 
satisfies the following requirements: 
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Let I/’ denote the public information distributed at t, V,’ denote all public information distributed till 
t, K’ denote the master key used at t, and KL denote all master keys used till t, 1 G t G T, where T E N, 

(3) H(K’ I s. ,si 
(4) H(K’ IS”“” Srn 

) V’>=O, 
VI, Ki-‘, for u G T) > 0, 

for an arbitrary’:;; ‘of %-&dices Ii,, . . . , i,) from (1,. . . , 12). 

Note that the keys of conventional (m, n> threshold schemes will not be changed. Therefore 
conventional threshold schemes are special cases of dynamic threshold schemes and can be represented 
by (m, IZ, I> DTSs. According to the security level which the DTS can provide at each updates of the 
master key, a perfect Cm, n, T) DTS is defined as follows. 

Definition 2. An (m, n, T) DTS is perfect if 

H(K’ I sil,.a*, Sim_,2 Va_l, KL-r, for u G T) = H( K’) 

for an arbitrary set of m indices Ii,, . . . , i,) from 11,. . . , n}. 

3. Perfect dynamic threshold scheme over finite sets 

In the section, we will show that the perfect dynamic threshold scheme does not exist when the master 
key need be updated llog, I 9 I /log, Ii%? 1 J times or more while the secret shadows remain unchanged, 
where 9 is the secret shadow space and X is the master key space. 

Lemma 3. Zf there exists a perfect (m, II, T) DTS, there exists a perfect (m, m, T) DTS. 

Proof. The perfect Cm, n, T) DTS can be realized by generating the same II secret shadows as those in a 
perfect (m, n, T) DTS but distributing only m of them. The remainders, II - m secret shadows, are 
destroyed. Thus, the scheme satisfies the definition of a perfect Cm, m, T) DTS. 0 

Theorem 4. There does not exist any perfect Cm, n, T) DTS in which the master key and the secret shadows 
are taken from finite sets A? and 9, respectiaely, and T > llog, I 9 I /log, l Z I I. 

Proof. From Lemma 3, it is clear that there does not exist a perfect (m, n, T) DTS if there does not exist 
a perfect Cm, m, T) DTS. Hence, we need only to show the nonexistence of perfect Cm, m, T) DTS. We 
will prove the theorem by contradiction. Assume that there exists a perfect (m, m, T) DTS in which the 
master key and the secret shadows are taken from finite sets _?Y and 9, respectively, and T > 
llog, I 9 I /log, I 37 I I. It is clear that for any t, 1 G t Q T, 

(5) H(K’IS ,,..., S,,V’)=O, 
(6) H(K’I&,..., S,, L’=‘, Kim’, for u < T) = HCK’). 

Then we can create a perfect private-key cryptosystem as follows. Let the key of the private-key 
cryptosystem be S,, the plaintext M = (K’, . . . , KT >, and the corresponding ciphertext C = 
(V’)...) VT, s, ,...) S,>. That is, C = E,,(M). From (51, given S, and C, the plaintext M can be 
reconstructed from the m shadows in the perfect DTS. Assume that the plaintext M is taken randomly 
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from 3YT, then H(M) = H(K1,. . . , KT) = T. log, I Z 1. On the other hand, 

H(MlC)=H(K’,..., KTIS2 )...) S,,V’)...) I/“) 

=H(K’)S, )...) s,,V )...) Vr)+H(K21Sz )..., S,,V’)...) VT, K’) 

+ a*. +H(KTjS, )...) s,, Vi)...) I/r, K’)...) Pi) 

=H(K’ I&,..., s,, I/,T) + H( K2 I s,, . . .) s,, v,‘, K’) 

+ * . . +qzP I s,, . . .) s,, v,‘, P’) 

=H(K’) +H(ZP) + ..* +H(KT) (by(6)) 

=log,lzI+log,I~I+ ..a +log,l~l 

= T.log,lZl. 

Therefore, N(M) = H(M I C) and p(M = Ma) =p(M = M,, I C> = l/ I 27 I T. Hence, this private key 
cryptosystem is perfectly secure. In this cryptosystem, the length of the message is T * log, I 37 I and the 
length of the key is log, I Y I. Because T > llog, I PI/log, IX II and T E N, we have T> 
[log,(~I/log,I~IJ+l.Let a=log,IZlandb=log,l~l.Then 

SO, T. log, ) 3 I > log, ( 9 I. It means that the number of possible messages is greater than the number 
of possible keys. This is a contradiction to the perfect secrecy system which requires that the number of 
possible keys must be greater than or equal to the number of possible messages [2,91. Therefore, perfect 
(m, m, [log, ( Y I /log, I AT I1 + 1) DTS does not exist. It implies perfect (m, II, [log, I 9 I /log, I 3 I1 + 1) 
DTS does not exist. That is, the perfect dynamic threshold scheme does not exist when the master key 
need be updated more than or equal to [log, I 9 I /log, I 37 II times. 0 

From Theorem 4, we conclude that the necessary condition for the existence of a perfect (m, IZ, T) 
DTS is that the length of the secret shadow should be at least T times longer than that of the master key. 
In order to maintain and manage the secret shadows efficiently, the length of the secret shadow should 
be as short as possible. Hence, the secret shadow length of a perfect Cm, II, 2) DTS must be optimal if it 
is equal to twice of that of the master key. In the next section, we give a construction of the perfect 
(m, n, 2) threshold scheme with the optimal length. 

4. The design of a perfect Cm, n, 2) DTS 

In this section, we will propose a perfect Cm, n, 2) DTS in which the master key can be updated once 
(while the secret shadows remain the same) and be still protected perfectly though up to m - 1 secret 
shadows are disclosed. Other perfect (m, n, T) DTSs can also be realized in the same way. 

We construct the perfect (m, n, 2) threshold scheme as follows. To distinguish between “times” and 
“exponent”, we will use x’ to denote x at t, and (x)’ to denote exponential operation on x. In addition, 
f’(x) denotes the first-order derivation of f(x). The II shadows Si are selected randomly from GF(p2). 
Si = (si,,, s~,~) (mod p), i = 1,. . . , II. At t, 1 G t SG 2, let 

f,(x) =a~,_,~(~)~~-‘+ ... +ui.(x) +a; (mod I)) 
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be a polynomial of degree 2m - 1 over the finite field GF(a). The master key K’ is given by: 

K’= at, =f,(O) (mod p) 

The public information I/’ is given by: 

I/‘= (f,(l) -s~,~, f,(l) -~,,~,...,f:(n) -s,,~) (mod P). 

Obviously, being given any m secret shadows (without loss of generality, we assume that those m shadows 
are S,, . . . , S,), (f,(l>, f:(l), f,(2), f$), . . . , ft(m), f:(m)> can be obtained from V’. Thus, fi(x) can be 
reconstructed from the Hermite interpolating polynomial 141 as follows, 

f,(x) = f {1-2~~(k)(x-k)}.(L,(~))~.f,(k) + 5 (--W(~k(x))2YXk) (mod P), 
k=l k=l 

where L,(x) = ll~!,,j=k(~ -j)/(k -j). Thus, the master key K’ can be obtained by f,(O). 
The security of the resulting dynamic threshold scheme can be analyzed as follows. At t = 1, we 

assume that m - 1 secret shadows are known (namely, S,, . . . , Sm_l), i.e. H(S,) = 0, for 1 < i Q m - 1, 
and the public information I/’ and V2 are also distributed. (It is clear that the knowledge of V2 will not 
leak any information about secret shadows because f*(x) is unknown.) Then the value of 
( fl(l), f;(l), . . . , flh - 11, fJm - 1)) is k nown and H(S,) (i > m - 1) is still equal to 2 log, p. Thus, 
we have 2m - 2 linear equations about fr(x) and f;(x) which have 2m unknown coefficients totally. So, 
the coefficients of fr(x> can be represented by linear functions of two variables, e.g. 

f,(x) =(3a+5b+ 1) (X)2m-1+ ..* +(2a+3b+4).(~)+(6~+2b+5) (modp). 

So, K’ =fl(0) is also a linear function of two variables over GF(p). It is clear that H(K’ I I/‘, V2, any 
m - 1 secret shadows) = log, p = H( K1). It provides perfect secrecy at t = 1 though up to m - 1 secret 
shadows are disclosed. 

At t = 2, we assume that m - 1 secret shadows are known (namely, S,, . . . , S,_ 1), and K’ is released, 
i.e. H(S,) = 0 and H(K’) = 0, for 1 Q i urn - 1. Therefore the values of (fr(l>, f;(l), . . . ,f,(m - 
l), f;(m - 1)) and f,(O) are known. We have 2m - 1 linear equations about fr(x) and f;(x) which have 
2m unknown coefficients totally. So, the coefficients of fr(x) can represented by linear functions of a 
variable. Thus, MS,) (i > m - 1) is equal to log, p. On the other hand, the value of 
(f*(I), &(I), . . . , f&n - 0, f;<m - 1)) is also known. Also (f2(m>, f;(m)> can be expressed by linear 
functions of a variable. So we have 2m linear equations with 2m + 1 unknown variables totally. So, the 
coefficients of f*(x) can be expressed into linear functions of a variable. It is clear that H(K2 I V1,V2, 
any m - 1 secret shadows, K1> = log, p = H(K2). It provides perfect secrecy at t = 2 though up to 
m - 1 secret shadows are disclosed. Hence, the dynamic threshold scheme satisfies the definition of 
perfect dynamic threshold scheme. 

Note that all secret shadows will be known if K1 and K2 are released, and m - 1 secret shadows are 
known in the perfect Cm, n, 2) DTS above. Therefore the scheme cannot provide perfect secrecy at t = 3 
when up to m - 1 secret shadows are disclosed. 

Note that the length of the secret shadow is just twice that of the master key in the resulting perfect 
Cm, n, 2) DTS. In the same way, by including higher-order derivations of f(x), it is possible to design an 
perfect (m, n, T) DTS in which the length of the secret shadows is just T times that of the master key. 

5. Conclusions 

In this paper, we first show that the perfect dynamic threshold scheme does not exist when the master 
key need be updated [log, I 9 I /log, 13 I] times or more but the secret shadows remain the same, 
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where 9 is the secret shadows space and 337 is the master key space. It implies that there does not exist 
any perfect dynamic threshold scheme in which the master key can be updated for infinite times while 
not modifying the secret shadows. The necessary condition for the existence of a perfect Cm, n, T) DTS 
is that the length of the secret shadow should be at least T times longer than that of the master key. And 
then, we propose a perfect (m, YE, 2) dynamic threshold scheme in which the master key can be updated 
once without changing the secret shadows, though m - 1 secret shadows are disclosed. Other perfect 
(m, n, T) DTSs in which the length of the secret shadow is just T times that of the master key can be 
realized in the same way. 

References 

[l] G.R. Blakley, Safeguarding cryptographic keys, in: Proc. 
NCC 48 (AFIPS Press, Montvale, NJ, 19791 313-317. 

[2] D.E.R. Denning, Cryptography and Data Security (Ad- 

dison-Wesley, Reading, MA, 1983). 

[3] R.W. Hamming, Coding and Information Theory 
(Prentice-Hall, Englewood Cliffs, NJ, 1986). 

[4] D.R. Kincaid and E.W. Cheney, Numerical Analysis 
(Brooks/Cole, 1990). 

[5] C.S. Laih, L. Harn, J.Y. Lee and T. Hwang, Dynamic 

threshold scheme based on the definition of cross-product 

in an n-dimensional linear space, J. Inform. Sci. Engineer- 

ing 7 (1991) 13-23; also in: Advances in cryptology: Euro- 
crypt’89 (Springer, Berlin, 1990) 286-298. 

[6] National Bereau of Standards, Data encryption standard, 

FIPS PUB 46, Washington, DC, 1977. 

[7] R.L. Rivest, A. Shamir and L.M. Adleman, A method for 

obtaining digital signatures and public-key cryptosystems, 

Comm. ACM 21 (1978) 120-126. 
[81 A. Shamir, How to share a secret, Comm. ACM 22 (11) 

(1979) 612-613. 

[9] C.E. Shannon, Communication theory of secrecy systems, 

Comput. Security J. VI (2) (1990) 7-66. 


