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Abstract 

In this paper, we propose a new formalism, named the Timed Communicating Finite State Machine (Timed CFSM), for specifying and 
verifying time-critical systems. Timed CFSM preserves the advantages of CFSM, such as the ability to express communication, synchro- 
nization and concurrency in computer systems. A given time-dependent specification can be formalized as a Timed CFSM, from which the 
reachability graph is constructed to verify the correctness of the specification. To cope with the space explosion problem from which all 
reachability analysis methods suffer, we propose a space reduction algorithm to meet the space constraint of the verification environment. 
0 1998 Elsevier Science B.V. 
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1. Introduction 

Computer systems are increasingly affecting nearly every 
aspect of our lives. They control aircraft, shut down nuclear 

power reactors in emergencies, keep our telephone systems 
running, monitor hospital patients, carry out financial trans- 
actions, and support multimedia applications [ 181. All of 

these systems exhibit time constraints. These systems with 
time constraints are called real-time systems. Real-time sys- 

tems are safety-critical especially when they must satisfy 
stringent time constraints. Otherwise, they will result in 

catastrophic risks. This type of system is referred to as a 
time-critical system as it emphasizes the potential risks of 
not meeting time constraints. 

Time-critical systems are difficult to design and analyze 
owing to their dual requirements: both functionality and 

timeliness. The difficulty arises from the necessity to 
model the dependence of system behaviors on timing vari- 
ables. Specifying a time-critical system is meant to express 
the dependence. Verifying a time-critical system is meant to 
prove the correctness of the dependence. In previous work, 
the dual-language model was proposed, which is composed 
of a state-based language and an assertional language [ 1,131. 
The state-based language is used to specify functional 
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components of time-critical systems, while the assertional 
language is used to formalize timing requirements. Finite 

State Machines (FSMs) [2,15] and Petri Nets [6,16,17] are 
representative examples of state-based languages. To 

include the ability of specifying timeliness explicitly, 

state-based languages are extended to the timed versions 
of original formalisms, for example, the Timed Petri Net. 
On the other hand, assertional languages are categorized as 
first-order logic with quantities, for example Hoare Logic 

[7,8] and RTL, [ 121, and as temporal logic with model opera- 

tors, for example, TIL [3] and R’ITL [ 151. Given a specifi- 
cation from the dual-language model, we could verify the 
correctness of time-critical systems by validating assertions. 

However, the validation is a theorem-proving process which 
could be either pen-and-paper work or concerned with rea- 

soning in artificial intelligence. There are two phases in the 

proof process: first, timing properties is described as 
“axioms”; second, a desired assertion is proved to be valid 
or not. The proof process is difficult to automate. Therefore 
uniform language models [ 141 are proposed to provide both 
simplicity and automation. In uniform language models, 
both functional components and time properties are 
described in the uniform language. Meanwhile verification 
of the system is a type of reachability analysis [6,11], rather 
than a theorem-proving technique. However, reachability 
analysis suffers from the space explosion problem, as we 
have discovered in the field of protocol engineering, which 
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Fig. 1. An example of the CFSM. 

means that the space complexity of reachability analysis is 

exponentially proportional to the number of global states. 
To date there has been little research about the space 

explosion problem for the validation of time-critical 

systems. 
We propose a new formalism, named the Timed Commu- 

nicating Finite State Machine (Timed CFSM) which is able 

to model time-critical systems. Timed CFSM preserves the 
advantages of CFSM, for example, the ability to express 

communication, synchronization and concurrency in 

computer systems. 
Verification of Timed CFSM uses the technique of reach- 

ability analysis, which suffers from the space explosion 

problem. To resolve the space explosion problem, we pro- 

pose an algorithm based on the path approach which 
produces only partial graphs, reducing the space require- 
ment. Compared to the probabilistic approach for the 

verification of the Timed Communicating State Machine 
(TCSM) proposed in Ref. [16], which could achieve only 

partial verification for the TCSM, the path approach is able 
to verify global states exhaustively, while not tampering 

with the space explosion problem. 
Recently, the increase in the number of multimedia appli- 

cations has overemphasized the verification of timing prop- 

erties. Previous formalisms have failed to specify 

multimedia applications, not only in functionality but also 
in timeliness. New formalisms are proposed to tackle such 

complicated systems [4,5]. There is a trend to maintain the 

separation of functional concerns and real-time concerns 
[4], such that the verification of functionality is not related 

to the verification of timeliness. Timed CFSM is powerful 
enough to be used in the verification of timing requirements 
for multimedia systems. In addition, simulations are 

adopted to facilitate the verification for the specification 
of multimedia systems [5]. Timed CFSM can be developed 

as a simulator, like the verifier proposed in Ref. [ 111. As a 
result, we designed the Timed CFSM to be a powerful form- 
alism for both verification and simulation of real-time and 

multimedia systems. 
This paper is organized as follows. In Section 2, we will 

introduce Timed CFSM and give example specifications. In 
Section 3, we will discuss how the reachability graph of the 
Timed CFSM could be constructed, and give a space-reduc- 
tion algorithm. Finally, in Section 4, we provide conclusions 
and future work. 

2. Timed Communicating Finite State Machine (Timed 
CFSM) 

In this section, we will first briefly introduce CFSM, 

which is employed as a basis of our model, and then 
describe our model, the Timed CFSM. 

2.1. Communicating finite state machine (CFSM) 

CFSM is a simple and commonly used representation of 

communication processes. Each process in CFSMs is a 
finite-state machine and connects with others via a full- 
duplex, error-free, FIFO channel. The notations for expres- 

sing transmissions and receptions of messages are ‘ - ’ and 

‘ + ‘, respectively. A ‘ - ’ sign represents the transmission 
of a message denoted by a capital word, while a ‘ + ’ sign 
represents its reception. Fig. 1 shows a simple system with 

two processes specified by CFSM. Initially, the process 
CLIENT is in state READY, and the process SERVER in 

state IDLE. The process CLIENT sends a request REQ to 
the process SERVER, and makes a transition to the state 
WAIT. After receiving REQ, the process SERVER transits 

into the state SERVICE, in which service is processing. 
After the service is done, SERVER sends a message 
DONE and returns to the state IDLE. CLIENT also returns 

back to the initial state READY after receiving the message 
DONE. A similar case exists if SERVER initializes the 

communication by sending a message ALARM. Other 

transitions are in the same fashion. The details together 
with the definition of CFSM can be found in Ref. [lo]. 

2.2. Reachability analysis of CFSM 

It has been proved that the reachability analysis is valid 

for us to understand the execution of the system specified in 
CFSMs [lo]. The reachability analysis involves the explora- 
tion of all interactions between processes and the derivation 

of all reachable global states. A global state is a combination 

of the states of all processes and the messages queued in all 
channels. The reachability analysis is a procedure for con- 
structing the reachability graph, in which each node repre- 
sents a reachable global state and each path corresponds to 
transitions of processes. 

Fig. 2 illustrates the reachability graph for the CFSM 
shown in Fig. 1. The root of the reachability graph is the 
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Fig. 2. The reachability graph. 

global state, which includes initial states of all processes and 
the communication queues between processes, which are 
empty initially. The successors of the root are those global 
states in which the state of a local process transits and the 
states of other processes remain the same. All nodes could be 
expanded by recursion until there ate no unexpanded nodes left. 

2.3. Time intervals 

It is suggested that real time is represented by a real 
number in Ref. [2]. However, because computer time is 
discrete, it is reasonable to use a discrete model for 
representing computer time, in which computer time is 
represented by a natural number (ct). ct starts from 0 and 
increases by 1 each time when a new tick is generated. ct 
never decreases, except when the computer is rebooted and 
thus ct is reset to 0. In a distributed system, because each 
host has its own local time ct, we need a time server to 
synchronize the local ct values. For simplicity, our time 
model assumes that the time server maintains a global 
time, gt, and every host in the distributed system is able to access 
gt and updates its local ct accordingly, without any delay. 

Within the time model, a time interval, or bound alter- 
natively, is represented as a 2-tuple [a,b], where both a and b 
are natural numbers and a 5 b. The relative time interval 
[a,b] is a time interval measured with respect to some refer- 
ence time instant. An event E[a,b] with time constraint 
means that the event should be invoked no earlier than 
time instant a and no later than time instant b. 

2.4. Timed CFSM 

Based on the CFSM, we propose the Timed CFSM. We 

-M 
Pi 

Pj 

bound each transition with a time interval that could be 
interpreted as a requirement (i.e. the ready time, the dead- 
line, etc.). A relative time interval [a,b] bounded with a 
transition is measured relative to the time r, at which the 
process i enters the source state S. On the other hand, [r + a, 
r + b] is the absolute time interval that the transition must 
obey. With the time constraint, a communication can suc- 
ceed only under certain conditions. The following scenario 
explains these conditions. 
Scenario: The process Pi is ready to send a message M in 
the time interval [a,b] relative to the time Ti when it enters 
the state Si. The process Pj is ready to receive the message M 
in the interval [c,a relative to Tj in state Sj. The commu- 
nication possibly occurs in the intersection of the intervals 
[Ti + a, Ti + b] and [Tj + C, Tj 
+ dj the communication delay is not ignored. Fig. 3 shows 

the scenario. 
In addition, a message type NULL is introduced in Timed 

CFSM. If a state transition is time-dependent without an 
occurrence of communication, we associate a time interval 
[a,b] with the transition only. Based on the aforementioned 
description, the formal definition of Timed CFSM isDefini- 
tion: A Timed CF.94 is a quadruple ((S;)i=ia; (OJi 
=~a; (MJi,+l,n; succ) where n is a positive integer, represent- 
ing the number of processes; 

(SJi=l,n are n disjoint finite sets of states (set Si includes 
the states of process i); 

(Oi)i=*,n is the set of initial states with Oi to be the initial 
state of process i; 
(MJ+l,n are n2 disjoint finite sets of messages with Mii 
to be {NULL} for all i, (MV represents the set of mes- 
sages sent from process i to process j); 
succ is a partial function mapping for each i and j, 

i.e. [N, I ] is a partial ordered set where N is the set of 
natural numbers. Let a,b be any two elements of N such that 
a 5 b. The set (nla 5 x 5 b) is called an interval of N 
denoted by [a,b]. Mapping to our time model, [N, I ] is 

exactly the set of time intervals. 
Fig. 4 shows a specification using Timed CFSM, which is 

an extended case of the example in Fig. 1. Timing con- 
straints are augmented to the system. Initially, gt is set to 
0. Meanwhile CLIENT is in state READY, and SERVER in 
IDLE. It is valid for CLIENT to send a request (message 
REQ) to SERVER in the interval [0, - ] (where ‘ - ’ 
indicates a ‘don’t care’ constraint which is interpreted as 

I I I I +M i 

Ti Tj Ti+a Tj+c Ti+b Tj+d 
> Timeline 

Fig. 3. Communication between Pi and Pk 
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Fig. 4. Timed CFSM. 

infinity here). SERVER is free to receive REQ since its 
bound is also [O, - 1. On receiving REQ, SERVER enters 
state SERVICE. After at least c time units have passed, it 
completes the service, sends the message DONE to 
CLIENT, and goes back to state IDLE. Between sending 
REQ and receiving DONE, CLIENT stays in state WAIT 
with a bound [O,a. When receiving DONE, CLIENT checks 
its time stamp to see whether it is valid or not. An out-of- 
date message will be of no use at all. 

In Fig. 4, it is intuitive to see that CLIENT would violate 
the timing bound + DONE[O,a if d < c. However, it is not 
easy to verify timing properties when the number of pro- 
cesses and states increases. Therefore, we need to construct 
the reachability graphs from Timed CFSM. Before formally 
presenting the algorithm for reachability graph construction, 
we introduce the reachability analysis of Timed CFSM, and 
compare the similarity and the difference between the 
reachability analysis of CFSM and that of Timed CFSM. 

2.5 Reachability analysis of Timed CFSM 

As in Section 2.2, a reachability graph for CFSM is com- 
posed of nodes (global states) linked by paths (transitions). 
The reachability graph for Timed CFSM is similar to that 
for CFSM. We define the global states and the transitions of 
Timed CFSM as follows. 
Definition: a global state is a pair (S,C) where S is an 
n-tuple (sl,s2,..., s,) with si to be the current state of process 
i, and C is an n*-tuple (C,, ,..., Cin,CZi ,..., C,,) with C, to be 
the sequence of messages from MP 
Definition: the initial global stare is the global state 
(Se. Cc> with So to be (01,02 ,..., o,,), and Co to be empty. 
Definition: a global transition is a binary relation - on 

MONITOR 

global states: (SC) (S’,C’> iff there exists i,j, and xij satisfy- 
ing one of the following conditions: 

(i) All the elements of (S,C) and (S’,C’) are the same 
except 
Si’ = SUCC(Si, - xv) and C,’ = Cip, 
sj’ = succ(sj, + ~0) and Co = X&U 
where + and - represent receiving and sending of Xip 

(ii) All the elements of (S,C) and (S’,C’) are the same 
except 
si’ = suCc(si,NULL) 
Definition: a global state (SC) is reachable iff (S&s> - 
*(SC) where - * is the reflexive and transitive closure of 
the global transition - . 

In addition, the reachability graph of Timed CFSM dif- 
fers from that of CFSM in two aspects. 

(1) Not all global states in the reachability graph of CFSM 
should be included in that of Timed CFSM. A global state 
which is unreachable owing to timing constraints should be 
deleted from the reachability graph of Timed CFSM. 

(2) A global state in the reachability graph of Timed 
CFSM may be entered more than once and produce different 
successors owing to different timing relationship. 

We will explain how to keep the timing relationship so 
that we could find both unreachable global states and 
repeated global states when constructing the reachability 
graph in the next section. We end this section with an exam- 
ple of Timed CFSM, which will be used to construct the 
reachability graph in the next section. 

2.4. Examples 

Fig. 5 shows the railroad crossing control system. 
The system consists of two machines: MONITOR and 

CONTROLLER 

Fig. 5. Timed CFSM for the crossing-road system. 
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Fig. 6. The scenario behind the pruning process. 

CONTROLLER. MONITOR watches the railroad for the 
train approaching. When the train is less than half a mile 
from the crossing, MONITOR sends the signal DOWN- 

GATE to CONTROLLER. While in state 0, CONTROLLER 

goes to state 1 on receipt of DOWN-GATE, and before the 
deadline it makes a transition to state 2. On the other hand, the 

train continues processing and enters state 2 after a delay of 

300 time units. The situation is shown in Fig. 5 by the 

transition with the time interval [300,300] which is a transi- 
tion of a message type NULL. Later, when the train has 

passed, MONITOR sends the message UP-GATE to 
CONTROLLER and transits to state 3. Upon receiving 
UP-GATE, CONTROLLER transits to state 3 immediately. 
While in state 3, CONTROLLER either transits to the initial 
state 0, or transits back to state 1 if a message DOWN- 
GATE is received. 

3. The construction of reachability graphs 

We will present the algorithm for constructing the reach- 
ability graph in a backward way. In Section 3.1, we intro- 

duce two processes used to modify the reachability graph 
derived from the non-Timed CFSM, which is the CFSM 
abstracting timing constraints away from a Timed CFSM. 

The pruning process deletes those nodes violating timing 
constraints in the reachability graph of the non-Timed 

CFSM. On the other hand, the growing process expands 
the offspring for nodes under certain conditions. The result- 
ing graph, after executing these two processes, is the reach- 
ability graph of a Timed CFSM. 

3.1. The weighted reachability graph 

Before looking into the pruning and growing processes, 
we introduce the weighted reachability graph which is 
derived from the reachability graph of the non-Timed 
CFSM by adding weighted edges. The weight of an edge 
between two global states is assigned either a positive value 
or a negative value. A positive weight of the edge from 
global state S to global state S’ represents the minimum 
delay of the system in state S before transiting to state S’. 
On the other hand, a negative weight of the edge from S’ to 
S represents the deadline for the system to transit from S to 

S’ . In addition, if the value of the weight is 0, it means that S 

is synchronized with S’. With the definition of weights, we 
present the algorithm for construction of a weighted reach- 

ability graph below: 

(1) Construct the reachability graph of the non-Timed 

CFSM. 

(2) Traverse the reachability graph width-first. During 

the traversal, add weighted edges by the following 
rules: (i.e. we will refer a node in the reachability 

graph as a global state to avoid confusion). 

Assume the presently traversed node is S, and S’ is a 
successor of S resulting from a transition t[a,b] from 
local state s to local state s’. 

l If t is a sending or a NULL operation, add an edge with 

weight + a from S to S’ indicating the delay between S 
and S’, and an edge with weight - b from S’ to S 
indicating the deadline of the transition. 

l If t is a receiving operation, add an edge with + 0 from S 

to S’ and an edge - 0 from S’ to S. The weights with 

value 0 indicate the synchronization for S and S’. Push S 

in a temporary stack. Backtrack along the path; find the 
global state S” which includes s as one of its local states, 

whereas the predecessor of S” does not. S” is called the 

trigger node of S’ corresponding to s, which triggers the 
transition to s. Add an edge with weight + a from S” to 

S’ and an edge with - b from S’ to S”. Pop up S for 
continuing traversals. 

(3) Continue the traversal until all nodes are traversed. 

In the following sections, we will apply the pruning and 

growing processes to the weighted reachability graph. 
Before we continue, we introduce some terms about the 

weighted reachability graph: the weight of a path P from 

S to S’ is the sum of weights of consecutive edges compos- 

ing P, and the weight of the shortest path from S to S’, 
denoted as w(S,S’), is defined as the minimum path weight 
from S to S’. If w(S,S’) > 0, S happens before S’. If 
w(S, S’) = 0, S is synchronized with S’. On the other hand, 
if w(S,S’) < 0 and w(S’,S) < 0, S and S’ are concurrent. 

3.1.1. The pruning process 

The pruning process is used to discard global state 
violating timing constraints. Fig. 6 shows the scenario invol- 
ving two processes, Pl and P2. The left part of Fig. 6 shows 
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Fig. 7. Scenario involving processes Pl and P2. 

the Timed CFSMs for Pl and P2, respectively, and the right 

shows the weighted reachability graph. Let S represent the 

global state (sr,s& t r[a,b] is a transition from sl, and t2[c,a 
is from s2 When constructing the next global states, if both 

Pl and P2 are executable (i.e. a global state is executable if 

it contains a transition of type sending or type NULL, or 
type receiving with desired message available) and the next 

global states are S’ and S”, respectively. There will be three 
possible relations between time intervals [a&] and [c,a as 
follows: 

If b < c, [a,b] is before [c,d. Under this condition, 

w(S’,S’) which is equal to - b + c will be positive. 
Thus, S’ happens before S”, so S” is unreachable from S 
due to S’. 

If d < a, [cdl is before [a,b]. Under this condition, 
~(9,s’) which is equal to - d f a will be positive. 
Thus, S” happens before S’, so S’ is unreachable from S 

due to S”. 
If a 5 c 5 b or c 5 b 5 d, [a, b] overlaps with [c,d]. 
Under this condition, both w(S’,S”) and w(S”,S’) 5 0, 
therefore S’ and S” are concurrent. and are reachable 
from S. 

In addition, there is another type of unreachable state, 
namely the unsatisfied receiving, which happens under the 
condition when a message with an invalid timestamp is 
received. If S’ is a successor of S and the transition t from 
S to S’ is a receiving, we have to check whether the receiv- 

ing message arrives in the valid period. To sum up, the 
algorithm for the pruning process is shown below: 

Traverse the reachability graph width-first. 
During the traversal, assume S is the currently traversed 
node, and SUCC is the set of successors of S. For each Si 
in SUCC, if there exists Sj in SUCC, such that w(Sj,S i) is 
positive, discard Si and its offspring. 
For those Si with a transition of the type receiving, find 
the trigger node Sti for S i corresponding to the receiving, 

4. 

and calculate the weight of the cycle S,S,. . .,Sti,Si. If the 
weight is positive, that is, the message arrives too early, 

the global state S together with its offspring should be 
discarded. On the other hand, if the aggregated weight 

for the cycle SiqStiy...,S,Si is positive, that is, the 
message arrives too late (the deadline of the reception 
is violated), the global state S together with its offspring 

should be discarded. 

Repeat step (2) through (3) until all nodes are traversed. 

3.1.2. The growing process 
The growing process is used to expand the pruned graph, 

and thus derive the reachability graph. The pruned graph is 

not the reachability graph for the Timed CFSM yet, because 
two global states containing the same local states and the 

same channel messages could generate different successors 
under different timing sequences. The growing process 
identifies the condition and expands the weighted reach- 

ability graph when necessary. Fig. 7 shows the scenario 

involving two processes, Pl and P2, which run with periods 
100 and 150, respectively. Fig. 7(a) and (b) show the Timed 
CFSMs of Pl and P2. Fig. 7(c) shows the partial reachability 

graph with unreachable states marked gray. The dash-line 
block in Fig. 7(c) contains the weighted reachability graph 

derived from the non-timed CFSM, and the other part of Fig. 
7(c) is what is newly expanded. The execution of the system 
is described as follows. The initial global state is (0,O). After 
100 time units, Pl goes to state 1 and back to state 0 in- 
stantaneously. Again the global state is (0,O). However this 

time the state (0,O) is different from the initial global state, 
though both have the same local states. We observe that P2 

is able to make a transition to state 1 after 50 time units, 
which is not enabled in the initial global state. In fact, Pl 
and P2 will run periodically every 300 time units. Therefore, 
after 300 time units, the system is in a state equivalent to the 
initial global state. We state the algorithm for the growing 
process as follows: 
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Fig. 8. The weighted reachability graph. 

Traverse the graph width-first. Start from the root; mark 
it as expanded. 
If the currently traversed global state S contains the same 
local states and channel messages with some expanded 
state S’, we use the following rules to identify their 
equivalence. Let S be (sI,s2,. . . . . .sJ, and the set of 
successors SUCC be (S r&.. . .,S k}, resulting from tran- 
sitions t I,t2 ,. . .,tk, respectively. Let SUCC’ be the set of 
successors of S’, which is equal to SUCC. For each state 
si in S, find the trigger node for S corresponding to sir say 
St;. At the same time, for si in S’, find the trigger node, 
say Sti. For each successor Sj from S, and the corre- 
sponding successor Sj’ from S’. 

If the conditions w(St,Sj) = W(Sti’rSj’) and 
w(S’,Sti) = W(Sj’,Sti’) hold, then S is equivalent to S’; 
the subgraph generated from S’ is isomorphic to the 
subgraph generated from S. Under such condition, 
discard S’ and go to step (4). Or if the following two 
conditions hold, S is also equivalent to S’. 
If 1 is the largest lower bound for all ti values then the 
conditions w(Sti,Sj) 2 1 and w(Sti’,Sj’) 2 1 hold. 
If u is the smallest upper bound for all ti values, then the 
conditions w(Sti,Sj) < u and W(Sfi’, Sj’) < u hold.When 
these two conditions hold, all transitions from S and S’ 
to their successors can be enabled and all deadlines can 
be met. In this case, all successors can be reached, and 
therefore S is equivalent to S’. 

3. Otherwise, S is different from S’. We should expand the 
subgraph from S by copying the subgraph from S’. 

4. Repeat (2) through (3) until all nodes are traversed. 

After applying the pruning and growing processes, the 
resulting graph omitting weighted edges is the reachability 
graph of the Timed CFSM. Fig. 8 shows the weighted reach- 
ability graph, in which the gray nodes represent unreachable 
global states. 

3.2. The proposed algorithm for reachability graph 
construction 

With the pruning and growing processes, we have devel- 
oped an algorithm for constructing the reachability graph 
from a Timed CFSM. The algorithm is explained as follows: 

Construct SO the initial global state. Designate So as an 
unexpanded node. 
Choose an unexpanded node S. Mark it as expanded. Let 
SUCC be the set of successors {S i,S2,. . .,Sk} Add the 
weighted edges. Use the pruning process to discard 
unreachable successors in SUCC. 
For each Si remaining in SUCC, if it is equivalent to an 
expanded global state S’, add an edge from S to S’; else 
add an edge from S to Si, mark Si unexpanded. 
Repeat step (2) through (3) until there are no unexpanded 
nodes left. 
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Fig. 9. The four candidates of the shortest path from S, to S,. 

The reachability graph constructed from the algorithm is 

proved to be finite. The proof is as follows:Proof: In the 

growing process, we have identified the conditions for two 
global states to be equivalent. All the equivalent global 

states could be classified into an equivalent class. If we 

prove the number of equivalent classes is finite, we can 
assert that the construction of the reachability graph can 

be terminated. We state the proof in three steps: 

1. Partition the nodes of the reachability graph by their 
local states and channel messages. The nodes of a parti- 
tion have the same local states and channel messages. 

2. For each node S, refine the partition as follows: 

(A) If the deadlines for all transitions of S’s local states 
are infinite, then we can divide the nodes into classes 0 

through r, where r is the largest ready time among all 
transitions of S’s local states. We classify all S’s in the 

partition according to w(S’,S), where S’ is the trigger 
node for S. A node S belongs to class i if w(S’,S) is 

equal to i and less than r. Otherwise, S belongs to class 

r. Thus, there are r + 1 classes in total. 
(B) if the smallest deadline for S’s local state transitions 
is finite, say d, then for each successor S’, classify the 

nodes into class 0 through d + 1, according to w(S,S’). 
The partition is further refined according to w(S’,S). If 
the deadline for the transition to S’ is infinite, then 

w(S’,S) is negative infinite. Alternatively, if the dead- 
line is finite, say d’, then w(S’,S) is bounded to the sum 

of the two deadlines d + d’. Therefore, there are a finite 
number of equivalent classes. 

3. Each node of the reachability graph must belong to a 

certain equivalent class, as described in step (2). Thus, 

the construction of the reachability graph can be termi- 
nated. 

In the next section, we will discuss the space requirement 
of the algorithm. 

3.3. Time and space requirements of the algorithm 

Two basic steps of our algorithm are the assignment of 
weighted edges and the calculation of weights of paths. We 

will discuss the time requirement of two basic steps. 

Assume the currently traversed node is S, the executable 
transitions from S are t ,,t2 ,. . .,tk with corresponding source 

local states s r,s2 . . . . sk and resulting successors SI,S2 . . . . Sk. 

To assign weighted edges we have to backtrack the graph to 
find the trigger nodes St; for S corresponding to s ;. As a 

result, the time complexity of the backtracking is linearly 

proportional to the length of the path from St; to Si. On the 

other hand, to calculate w(Si,Sj), we have to find the shortest 
path from Si to Sj. There are four candidates for the shortest 
path shown in Fig. 9: (a) S,,S,Sj, (b) S;,S )...) Stj,Sj, (c) S;,St 

; ,...) S,Sj and (d) S,St, )..., Stj,SF The time complexity of the 
calculation of w(Si,Sj) is linearly proportional to the length 

of the path from Si to Sj. In the worst case, if the trigger node 
for S corresponding to Si is the root R, we have to backtrack 

all nodes along the path from S to R. Again, in the worst 
case, the path length can be equal to the state space. How- 

ever, in general, the trigger nodes for S are not far from S. 
In the aspect of space complexity, the analysis of reach- 

ability suffers from the state space explosion problem. 
Assume that there are, n processes in the Timed CFSM, 
each global state will have n states and n2 communication 

channels, and the average number of states of each process 
is 1, then the space requirement is (n.s + n2.m)J” where s 

and m are space requirements for keeping a state and a 
channel, respectively. In addition, the growing process 

will speed up the explosion of space. As a result, we have 
to reduce the state space during the construction of the 
reachability graph. A possible solution is to construct only 

partial graphs when we validate the Timed CFSM. In the 
next section, we will discuss our solution based on the path 

approach. 

3.4. Space complexity reduction 

Before we present our solution for space reduction, we 
will describe the tree representation of a Timed CFSM in 
Section 3.4.1 and then explain the path approach in Section 
3.4.2. 

3.4.1. Tree representation of timed CFSMs 
The tree representation of a Timed CFSM is a collection 
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-DOWNGATE [300,3001 

CONTROLLER 10.-l 11.-l 

Fig. 10. Tree representation of Timed CFSM. 

of trees each of which represents a process in the Timed 
CFSM. The root of a tree is the initial state of a process Pi 
and we expand the tree recursively with the following 
algorithm. 

1. Start from the initial state Oi. Designate Oi as the root of 
the tree. 

2. Choose a branch node. Add all transitions from the cor- 
responding state as edges, and all entering states as 
nodes. If the newly expanded node has a terminal state 
or is the same as some branch node on the path from root, 
then it is a leaf, else it is a branch node. 

3. Repeat (2) until all branch nodes expanded. 

Fig. 10 shows the tree representation of the railroad cross- 
ing control system in Section 2.5. A path for a process Pi is 
defined as a path starting from the root and ending with a 
leaf in the tree representation. For example, the only path in 
the process MONITOR is 0- 1-2-3-O and two paths in the 
process CONTROLLER are O-1-2-3-0 and O-l-2-3-1, 
respectively. 

3.4.2. The path approach 
The path approach is to validate the Timed CFSM, 

denoted as M, by constructing only partial graphs of the 
reachability graph. A concurrent path set is a set whose 
elements are paths p1,p2 ,..., pn in processes P,,P* ,..., P, 
respectively. A concurrent path set could be viewed as a 
new Timed CFSM, M’, in which each path represents 
a process. Therefore we could apply the algorithm in 

Sender Receiver 

Section 3.2 to construct the reachability graph of M’ 
which is a partial graph of the reachability graph of M. 
During the construction of the reachability graph, if M’ 
enters a state that has no successors, the concurrent path 
set is illegal. A state does not have successors under the 
following conditions: (1) a process in the concurrent path 
set sends a message while the receiving processes is not in 
the concurrent path set. Under this condition, the concurrent 
path set is invalid; (2) a deadlock occurs within the concur- 
rent path set. With this idea in mind, we revise our algorithm 
as follows. (Assume the tree representation has been 
constructed.) 

1. 

2. 

3. 

4. 

Choose a concurrent path set, start from the initial global 
state So Mark it as unexpanded. 
Choose an unexpanded node S. If an unexpanded node is 
not found, store the reachability graph in the secondary 
storage and go to step (5). Let SUCC be the set of 
successors [S r,Sz ,. . .,Sk). If SUCC is null, go to step 
(4). Add the weighted edges and discard unreachable 
successors in SUCC. 
For each Si remaining in SUCC, if it is equivalent to an 
expanded global state S’, add an edge from S to S’. 
Otherwise, add an edge from S to Si, mark Si unex- 
panded, and mark S expanded. Go to step (2). 
If there is any message left in channels, the concurrent 
set is invalid. On the other hand, if there is no message 
left in channels, we conclude that a deadlock has 
occurred. 

Sender-Receiver Channel Receiver-Sender Channel 

Fig. 11. Timed CFSM for stop-and-wait protocol. 
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5. Repeat (1) through (3) until all concurrent path sets are 
verified. 

The space requirement of the revised algorithm would be 
less than that of the original algorithm. Assume the average 
length of each path is I’, which is shorter than 1. Each time 
that a concurrent path set is validated, the number of 
possible global states is (1’)“. Furthermore, the capacity of 
communication channels needs to be one unit only. The 
memory requirement of the algorithm is (n.s + n’).(V)“, 
where n is the number of the processes, and s is the space 
requirement for keeping a state. Although the space require- 
ment of the revised algorithm is also exponential, the base 
component is smaller than that in the previous algorithm. On 
the other hand, the time complexity would be IIni times 
compared to the original algorithm. If the removal of illegal 
concurrent path sets is performed in advance, the time com- 
plexity can be further reduced. 

3.5. Applications of timed CFSM 

Many communication protocols, in which timing 
constraints are required to be bundled with original func- 
tionality, can be modeled by Timed CFSM. For example, 
the stop-and-wait protocol presented in Ref. [9] can be 
modeled as the Timed CFSM in Fig. 11. There are four 
entities in the Timed CFSM: a sender, a receiver, a 
sender-receiver channel, and a receiver-sender channel. 
We can identify both unreachable and equivalent global 
states during the construction of the reachability graph. 
Other flow control protocols, such as X-on/X-off, Ping- 
Pong, and Window protocols, can also apply reachability 
analysis to verify their timing property in a similar way. 

4. Conclusions 

In this paper we propose the Timed CFSM, which can 
serve as a model for specifying and verifying time-critical 
systems. Transitions in Timed CFSM are bounded by a time 
interval, defined by [min,max], where min is the ready time 
and max is the deadline. Given a specification formally 
defined by a Timed CFSM, we are able to verify its timing 
properties by constructing the reachability graph for the 
Timed CFSM. The construction of the reachability graph 
from Timed CFSM is achieved by the pruning and growing 
processes. To cope with the space explosion problem, we 
propose a space complexity reduction algorithm to meet the 
space constraint of the verification environment. 

Acknowledgements 

This work was supported in part by the National Science 
Council of Taiwan. under contract NSC 85-2213-E-009-032. 

References 

[I I AC. Shaw, Reasoning about time in higher-level language software, 

IEEE Trans. Software Eng. 15 (1989) 875-889. 

[2] A. Gabrielian, M.K. Franklin, Multilevel specification of real-time 

systems, Comm. of ACM, May 1991, pp. 5 l-60. 

[3] A.C. Shaw, Communicating real-time state machines, IEEE Trans. 

Software Eng. 18 (Sept.) (1992) 805-816. 

[4] A.F. Ates, M. Bilgic, S. Saito, B. Sarikaya, Using timed CSP for 

specification, verification and simulation of multimedia synchroniza- 

tion, IEEE J. Selected Areas in Communications 14 (Jan.) (1996) 

126-137. 

[5] A. Lakas, G.S. Blair, A. Chetwynd, Specification and verification of 

real-time properties using LOTOS and SQTL, in: Proceedings of 

IWSSD-8, IEEE, 1996. 

[6] B. Berthomieu, M. Diaz, Modeling and verification of time dependent 

systems using Time Petri Nets, IEEE Trans. Software Eng. I7 (Mar.) 

(1991) 259-273y. 

[7] C. Hoare, An axiomatic basis for computer programming, Corn! 

ACM IO (12 Oct.) (1969) 576-580. 

[8] C. Hoare, Communicating sequential processes, Comm. ACM 8 (2 

Aug.) (I 978) 666-677. 

[9] C.M. Huang, S.W. Lee, J.M. Hsu, Probabilistic timed protocol verifi- 

cation for the extended state transition model, Proceedings of Inter- 

national Conference on Parallel and Distributed Systems (1994), 

Hsinchu Taiwan, pp. 432-437. 

[IO] D. Brand, P. Zafiropulo, On communicating finite-state machines, J. 

ACM 30 (April) (1983) 323-342. 

[ 1 I] D. Stuart, Implementing a verifier for real-time systems, in: Proceed- 

ings of the I lth Real-Time Systems Symposium, Lake Buena Vista, 

Florida, (I 990), pp. 62-7 I. 

[ 121 F. Jahanian, A. Mok, Safety analysis of timing properties in real-time 

system, IEEE Trans. Software Eng. SE-12 (Sept.) (1986) 890-904. 

[ 131 F. Jahanian, D. Stuart, Method for verifying properties of modechart 

specifications, in: Proceedings of the Ninth Real-Time Systems Sym- 

posium, Huntsville, Alabama, ( 1988). pp. 12-2 1. 

[14] C. Ghezzi, D. Mandrioli, S. Morasca, M. Pezz’e, Unified high-level 

Petri net formalism for time-critical systems, IEEE Trans. Software 

Eng. I7 (Feb.) (1991) 160-172. 

[l5] J.S. Ostroff, W.M. Wonham, Modeling, specifying, and verifying 

real-time embedded computer systems, in: Proceedings of the Eighth 

Real-Time Systems Symposium, San Jose, California (1987), pp. 

124-132. 

[ 161 M. Felder, D. Mandrioli, A. Morzenti, Proving properties of real-time 

systems through logical specifications and Petri net models, IEEE 

Trans. Software Eng. 20 (Feb.) (1994) 127- 141. 

[I71 N.G. Leveson, J.L. Stolzy, Safety analysis using Petri nets, IEEE 

Trans. Software Eng. SE-13 (Mar.) (1987) 386-397. 

[I81 T. Litter, A. Ghafoor, Synchronization and storage models for multi- 

media objects, IEEE J. Selected Areas in Communications 8 (Apr.) 

(1990) 413-427. 


