
ELSEVIER

computer
communications

Computer Communications 21 (1998) 460-469

Specification, validation, and verification of time-critical systems

Shiuh-Pyng Shieh*, Jun-Nan Chen

Departmenr of Cornpurer Science and Information Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

Received 19 April 1997; received in revised form 4 August 1997; accepted 4 August 1997

Abstract

In this paper, we propose a new formalism, named the Timed Communicating Finite State Machine (Timed CFSM), for specifying and
verifying time-critical systems. Timed CFSM preserves the advantages of CFSM, such as the ability to express communication, synchro-
nization and concurrency in computer systems. A given time-dependent specification can be formalized as a Timed CFSM, from which the
reachability graph is constructed to verify the correctness of the specification. To cope with the space explosion problem from which all
reachability analysis methods suffer, we propose a space reduction algorithm to meet the space constraint of the verification environment.
0 1998 Elsevier Science B.V.

Keywords: Time-critical systems; Specification; Validation; Verification; Reachability analysis; The space explosion problem; Path
approach

1. Introduction

Computer systems are increasingly affecting nearly every
aspect of our lives. They control aircraft, shut down nuclear

power reactors in emergencies, keep our telephone systems
running, monitor hospital patients, carry out financial trans-
actions, and support multimedia applications [181. All of

these systems exhibit time constraints. These systems with
time constraints are called real-time systems. Real-time sys-

tems are safety-critical especially when they must satisfy
stringent time constraints. Otherwise, they will result in

catastrophic risks. This type of system is referred to as a
time-critical system as it emphasizes the potential risks of
not meeting time constraints.

Time-critical systems are difficult to design and analyze
owing to their dual requirements: both functionality and

timeliness. The difficulty arises from the necessity to
model the dependence of system behaviors on timing vari-
ables. Specifying a time-critical system is meant to express
the dependence. Verifying a time-critical system is meant to
prove the correctness of the dependence. In previous work,
the dual-language model was proposed, which is composed
of a state-based language and an assertional language [1,131.
The state-based language is used to specify functional

* Corresponding author. Tel.: +886 35 731876; fax: +886 35 724176; e-
mail: ssp@csie.nctu.edu.tw

0140-3664/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved
PII SO140-3664(97)00145-X

components of time-critical systems, while the assertional
language is used to formalize timing requirements. Finite

State Machines (FSMs) [2,15] and Petri Nets [6,16,17] are
representative examples of state-based languages. To

include the ability of specifying timeliness explicitly,

state-based languages are extended to the timed versions
of original formalisms, for example, the Timed Petri Net.
On the other hand, assertional languages are categorized as
first-order logic with quantities, for example Hoare Logic

[7,8] and RTL, [121, and as temporal logic with model opera-

tors, for example, TIL [3] and R’ITL [151. Given a specifi-
cation from the dual-language model, we could verify the
correctness of time-critical systems by validating assertions.

However, the validation is a theorem-proving process which
could be either pen-and-paper work or concerned with rea-

soning in artificial intelligence. There are two phases in the

proof process: first, timing properties is described as
“axioms”; second, a desired assertion is proved to be valid
or not. The proof process is difficult to automate. Therefore
uniform language models [141 are proposed to provide both
simplicity and automation. In uniform language models,
both functional components and time properties are
described in the uniform language. Meanwhile verification
of the system is a type of reachability analysis [6,11], rather
than a theorem-proving technique. However, reachability
analysis suffers from the space explosion problem, as we
have discovered in the field of protocol engineering, which

S.-P. Shieh, J.-N. ChetKomputer Communications 21 (1998) 460-469 461

CLIENT SERVER

-DONE +ACK

Fig. 1. An example of the CFSM.

means that the space complexity of reachability analysis is

exponentially proportional to the number of global states.
To date there has been little research about the space

explosion problem for the validation of time-critical

systems.
We propose a new formalism, named the Timed Commu-

nicating Finite State Machine (Timed CFSM) which is able

to model time-critical systems. Timed CFSM preserves the
advantages of CFSM, for example, the ability to express

communication, synchronization and concurrency in

computer systems.
Verification of Timed CFSM uses the technique of reach-

ability analysis, which suffers from the space explosion

problem. To resolve the space explosion problem, we pro-

pose an algorithm based on the path approach which
produces only partial graphs, reducing the space require-
ment. Compared to the probabilistic approach for the

verification of the Timed Communicating State Machine
(TCSM) proposed in Ref. [16], which could achieve only

partial verification for the TCSM, the path approach is able
to verify global states exhaustively, while not tampering

with the space explosion problem.
Recently, the increase in the number of multimedia appli-

cations has overemphasized the verification of timing prop-

erties. Previous formalisms have failed to specify

multimedia applications, not only in functionality but also
in timeliness. New formalisms are proposed to tackle such

complicated systems [4,5]. There is a trend to maintain the

separation of functional concerns and real-time concerns
[4], such that the verification of functionality is not related

to the verification of timeliness. Timed CFSM is powerful
enough to be used in the verification of timing requirements
for multimedia systems. In addition, simulations are

adopted to facilitate the verification for the specification
of multimedia systems [5]. Timed CFSM can be developed

as a simulator, like the verifier proposed in Ref. [111. As a
result, we designed the Timed CFSM to be a powerful form-
alism for both verification and simulation of real-time and

multimedia systems.
This paper is organized as follows. In Section 2, we will

introduce Timed CFSM and give example specifications. In
Section 3, we will discuss how the reachability graph of the
Timed CFSM could be constructed, and give a space-reduc-
tion algorithm. Finally, in Section 4, we provide conclusions
and future work.

2. Timed Communicating Finite State Machine (Timed
CFSM)

In this section, we will first briefly introduce CFSM,

which is employed as a basis of our model, and then
describe our model, the Timed CFSM.

2.1. Communicating finite state machine (CFSM)

CFSM is a simple and commonly used representation of

communication processes. Each process in CFSMs is a
finite-state machine and connects with others via a full-
duplex, error-free, FIFO channel. The notations for expres-

sing transmissions and receptions of messages are ‘ - ’ and

‘ + ‘, respectively. A ‘ - ’ sign represents the transmission
of a message denoted by a capital word, while a ‘ + ’ sign
represents its reception. Fig. 1 shows a simple system with

two processes specified by CFSM. Initially, the process
CLIENT is in state READY, and the process SERVER in

state IDLE. The process CLIENT sends a request REQ to
the process SERVER, and makes a transition to the state
WAIT. After receiving REQ, the process SERVER transits

into the state SERVICE, in which service is processing.
After the service is done, SERVER sends a message
DONE and returns to the state IDLE. CLIENT also returns

back to the initial state READY after receiving the message
DONE. A similar case exists if SERVER initializes the

communication by sending a message ALARM. Other

transitions are in the same fashion. The details together
with the definition of CFSM can be found in Ref. [lo].

2.2. Reachability analysis of CFSM

It has been proved that the reachability analysis is valid

for us to understand the execution of the system specified in
CFSMs [lo]. The reachability analysis involves the explora-
tion of all interactions between processes and the derivation

of all reachable global states. A global state is a combination

of the states of all processes and the messages queued in all
channels. The reachability analysis is a procedure for con-
structing the reachability graph, in which each node repre-
sents a reachable global state and each path corresponds to
transitions of processes.

Fig. 2 illustrates the reachability graph for the CFSM
shown in Fig. 1. The root of the reachability graph is the

462 S.-P. Shieh, J.-N. ChenKomputer Communications 21 (1998) 460-469

E : empty

Fig. 2. The reachability graph.

global state, which includes initial states of all processes and
the communication queues between processes, which are
empty initially. The successors of the root are those global
states in which the state of a local process transits and the
states of other processes remain the same. All nodes could be
expanded by recursion until there ate no unexpanded nodes left.

2.3. Time intervals

It is suggested that real time is represented by a real
number in Ref. [2]. However, because computer time is
discrete, it is reasonable to use a discrete model for
representing computer time, in which computer time is
represented by a natural number (ct). ct starts from 0 and
increases by 1 each time when a new tick is generated. ct
never decreases, except when the computer is rebooted and
thus ct is reset to 0. In a distributed system, because each
host has its own local time ct, we need a time server to
synchronize the local ct values. For simplicity, our time
model assumes that the time server maintains a global
time, gt, and every host in the distributed system is able to access
gt and updates its local ct accordingly, without any delay.

Within the time model, a time interval, or bound alter-
natively, is represented as a 2-tuple [a,b], where both a and b
are natural numbers and a 5 b. The relative time interval
[a,b] is a time interval measured with respect to some refer-
ence time instant. An event E[a,b] with time constraint
means that the event should be invoked no earlier than
time instant a and no later than time instant b.

2.4. Timed CFSM

Based on the CFSM, we propose the Timed CFSM. We

-M
Pi

Pj

bound each transition with a time interval that could be
interpreted as a requirement (i.e. the ready time, the dead-
line, etc.). A relative time interval [a,b] bounded with a
transition is measured relative to the time r, at which the
process i enters the source state S. On the other hand, [r + a,
r + b] is the absolute time interval that the transition must
obey. With the time constraint, a communication can suc-
ceed only under certain conditions. The following scenario
explains these conditions.
Scenario: The process Pi is ready to send a message M in
the time interval [a,b] relative to the time Ti when it enters
the state Si. The process Pj is ready to receive the message M
in the interval [c,a relative to Tj in state Sj. The commu-
nication possibly occurs in the intersection of the intervals
[Ti + a, Ti + b] and [Tj + C, Tj
+ dj the communication delay is not ignored. Fig. 3 shows

the scenario.
In addition, a message type NULL is introduced in Timed

CFSM. If a state transition is time-dependent without an
occurrence of communication, we associate a time interval
[a,b] with the transition only. Based on the aforementioned
description, the formal definition of Timed CFSM isDefini-
tion: A Timed CF.94 is a quadruple ((S;)i=ia; (OJi
=~a; (MJi,+l,n; succ) where n is a positive integer, represent-
ing the number of processes;

(SJi=l,n are n disjoint finite sets of states (set Si includes
the states of process i);

(Oi)i=*,n is the set of initial states with Oi to be the initial
state of process i;
(MJ+l,n are n2 disjoint finite sets of messages with Mii
to be {NULL} for all i, (MV represents the set of mes-
sages sent from process i to process j);
succ is a partial function mapping for each i and j,

i.e. [N, I] is a partial ordered set where N is the set of
natural numbers. Let a,b be any two elements of N such that
a 5 b. The set (nla 5 x 5 b) is called an interval of N
denoted by [a,b]. Mapping to our time model, [N, I] is

exactly the set of time intervals.
Fig. 4 shows a specification using Timed CFSM, which is

an extended case of the example in Fig. 1. Timing con-
straints are augmented to the system. Initially, gt is set to
0. Meanwhile CLIENT is in state READY, and SERVER in
IDLE. It is valid for CLIENT to send a request (message
REQ) to SERVER in the interval [0, -] (where ‘ - ’
indicates a ‘don’t care’ constraint which is interpreted as

I I I I +M i

Ti Tj Ti+a Tj+c Ti+b Tj+d
> Timeline

Fig. 3. Communication between Pi and Pk

S.-P. Shieh, J.-N. ChenKomputer Communications 21 (1998) 460-469

CLIENT SERVER

463

Fig. 4. Timed CFSM.

infinity here). SERVER is free to receive REQ since its
bound is also [O, - 1. On receiving REQ, SERVER enters
state SERVICE. After at least c time units have passed, it
completes the service, sends the message DONE to
CLIENT, and goes back to state IDLE. Between sending
REQ and receiving DONE, CLIENT stays in state WAIT
with a bound [O,a. When receiving DONE, CLIENT checks
its time stamp to see whether it is valid or not. An out-of-
date message will be of no use at all.

In Fig. 4, it is intuitive to see that CLIENT would violate
the timing bound + DONE[O,a if d < c. However, it is not
easy to verify timing properties when the number of pro-
cesses and states increases. Therefore, we need to construct
the reachability graphs from Timed CFSM. Before formally
presenting the algorithm for reachability graph construction,
we introduce the reachability analysis of Timed CFSM, and
compare the similarity and the difference between the
reachability analysis of CFSM and that of Timed CFSM.

2.5 Reachability analysis of Timed CFSM

As in Section 2.2, a reachability graph for CFSM is com-
posed of nodes (global states) linked by paths (transitions).
The reachability graph for Timed CFSM is similar to that
for CFSM. We define the global states and the transitions of
Timed CFSM as follows.
Definition: a global state is a pair (S,C) where S is an
n-tuple (sl,s2,..., s,) with si to be the current state of process
i, and C is an n*-tuple (C,, ,..., Cin,CZi ,..., C,,) with C, to be
the sequence of messages from MP
Definition: the initial global stare is the global state
(Se. Cc> with So to be (01,02 ,..., o,,), and Co to be empty.
Definition: a global transition is a binary relation - on

MONITOR

global states: (SC) (S’,C’> iff there exists i,j, and xij satisfy-
ing one of the following conditions:

(i) All the elements of (S,C) and (S’,C’) are the same
except
Si’ = SUCC(Si, - xv) and C,’ = Cip,
sj’ = succ(sj, + ~0) and Co = X&U
where + and - represent receiving and sending of Xip

(ii) All the elements of (S,C) and (S’,C’) are the same
except
si’ = suCc(si,NULL)
Definition: a global state (SC) is reachable iff (S&s> -
*(SC) where - * is the reflexive and transitive closure of
the global transition - .

In addition, the reachability graph of Timed CFSM dif-
fers from that of CFSM in two aspects.

(1) Not all global states in the reachability graph of CFSM
should be included in that of Timed CFSM. A global state
which is unreachable owing to timing constraints should be
deleted from the reachability graph of Timed CFSM.

(2) A global state in the reachability graph of Timed
CFSM may be entered more than once and produce different
successors owing to different timing relationship.

We will explain how to keep the timing relationship so
that we could find both unreachable global states and
repeated global states when constructing the reachability
graph in the next section. We end this section with an exam-
ple of Timed CFSM, which will be used to construct the
reachability graph in the next section.

2.4. Examples

Fig. 5 shows the railroad crossing control system.
The system consists of two machines: MONITOR and

CONTROLLER

Fig. 5. Timed CFSM for the crossing-road system.

464 S.-P. Shieh, J.-N. ChedComputer Communications 21 (1998) 460-469

Pl S.

Fig. 6. The scenario behind the pruning process.

CONTROLLER. MONITOR watches the railroad for the
train approaching. When the train is less than half a mile
from the crossing, MONITOR sends the signal DOWN-

GATE to CONTROLLER. While in state 0, CONTROLLER

goes to state 1 on receipt of DOWN-GATE, and before the
deadline it makes a transition to state 2. On the other hand, the

train continues processing and enters state 2 after a delay of

300 time units. The situation is shown in Fig. 5 by the

transition with the time interval [300,300] which is a transi-
tion of a message type NULL. Later, when the train has

passed, MONITOR sends the message UP-GATE to
CONTROLLER and transits to state 3. Upon receiving
UP-GATE, CONTROLLER transits to state 3 immediately.
While in state 3, CONTROLLER either transits to the initial
state 0, or transits back to state 1 if a message DOWN-
GATE is received.

3. The construction of reachability graphs

We will present the algorithm for constructing the reach-
ability graph in a backward way. In Section 3.1, we intro-

duce two processes used to modify the reachability graph
derived from the non-Timed CFSM, which is the CFSM
abstracting timing constraints away from a Timed CFSM.

The pruning process deletes those nodes violating timing
constraints in the reachability graph of the non-Timed

CFSM. On the other hand, the growing process expands
the offspring for nodes under certain conditions. The result-
ing graph, after executing these two processes, is the reach-
ability graph of a Timed CFSM.

3.1. The weighted reachability graph

Before looking into the pruning and growing processes,
we introduce the weighted reachability graph which is
derived from the reachability graph of the non-Timed
CFSM by adding weighted edges. The weight of an edge
between two global states is assigned either a positive value
or a negative value. A positive weight of the edge from
global state S to global state S’ represents the minimum
delay of the system in state S before transiting to state S’.
On the other hand, a negative weight of the edge from S’ to
S represents the deadline for the system to transit from S to

S’ . In addition, if the value of the weight is 0, it means that S

is synchronized with S’. With the definition of weights, we
present the algorithm for construction of a weighted reach-

ability graph below:

(1) Construct the reachability graph of the non-Timed

CFSM.

(2) Traverse the reachability graph width-first. During

the traversal, add weighted edges by the following
rules: (i.e. we will refer a node in the reachability

graph as a global state to avoid confusion).

Assume the presently traversed node is S, and S’ is a
successor of S resulting from a transition t[a,b] from
local state s to local state s’.

l If t is a sending or a NULL operation, add an edge with

weight + a from S to S’ indicating the delay between S
and S’, and an edge with weight - b from S’ to S
indicating the deadline of the transition.

l If t is a receiving operation, add an edge with + 0 from S

to S’ and an edge - 0 from S’ to S. The weights with

value 0 indicate the synchronization for S and S’. Push S

in a temporary stack. Backtrack along the path; find the
global state S” which includes s as one of its local states,

whereas the predecessor of S” does not. S” is called the

trigger node of S’ corresponding to s, which triggers the
transition to s. Add an edge with weight + a from S” to

S’ and an edge with - b from S’ to S”. Pop up S for
continuing traversals.

(3) Continue the traversal until all nodes are traversed.

In the following sections, we will apply the pruning and

growing processes to the weighted reachability graph.
Before we continue, we introduce some terms about the

weighted reachability graph: the weight of a path P from

S to S’ is the sum of weights of consecutive edges compos-

ing P, and the weight of the shortest path from S to S’,
denoted as w(S,S’), is defined as the minimum path weight
from S to S’. If w(S,S’) > 0, S happens before S’. If
w(S, S’) = 0, S is synchronized with S’. On the other hand,
if w(S,S’) < 0 and w(S’,S) < 0, S and S’ are concurrent.

3.1.1. The pruning process

The pruning process is used to discard global state
violating timing constraints. Fig. 6 shows the scenario invol-
ving two processes, Pl and P2. The left part of Fig. 6 shows

S.-P. Shieh, J.-N. ChedComputer Communications 21 (1998) 460-469 465

Figure 7a Figure 7b

Figure 7(c)

Fig. 7. Scenario involving processes Pl and P2.

the Timed CFSMs for Pl and P2, respectively, and the right

shows the weighted reachability graph. Let S represent the

global state (sr,s& t r[a,b] is a transition from sl, and t2[c,a
is from s2 When constructing the next global states, if both

Pl and P2 are executable (i.e. a global state is executable if

it contains a transition of type sending or type NULL, or
type receiving with desired message available) and the next

global states are S’ and S”, respectively. There will be three
possible relations between time intervals [a&] and [c,a as
follows:

If b < c, [a,b] is before [c,d. Under this condition,

w(S’,S’) which is equal to - b + c will be positive.
Thus, S’ happens before S”, so S” is unreachable from S
due to S’.

If d < a, [cdl is before [a,b]. Under this condition,
~(9,s’) which is equal to - d f a will be positive.
Thus, S” happens before S’, so S’ is unreachable from S

due to S”.
If a 5 c 5 b or c 5 b 5 d, [a, b] overlaps with [c,d].
Under this condition, both w(S’,S”) and w(S”,S’) 5 0,
therefore S’ and S” are concurrent. and are reachable
from S.

In addition, there is another type of unreachable state,
namely the unsatisfied receiving, which happens under the
condition when a message with an invalid timestamp is
received. If S’ is a successor of S and the transition t from
S to S’ is a receiving, we have to check whether the receiv-

ing message arrives in the valid period. To sum up, the
algorithm for the pruning process is shown below:

Traverse the reachability graph width-first.
During the traversal, assume S is the currently traversed
node, and SUCC is the set of successors of S. For each Si
in SUCC, if there exists Sj in SUCC, such that w(Sj,S i) is
positive, discard Si and its offspring.
For those Si with a transition of the type receiving, find
the trigger node Sti for S i corresponding to the receiving,

4.

and calculate the weight of the cycle S,S,. . .,Sti,Si. If the
weight is positive, that is, the message arrives too early,

the global state S together with its offspring should be
discarded. On the other hand, if the aggregated weight

for the cycle SiqStiy...,S,Si is positive, that is, the
message arrives too late (the deadline of the reception
is violated), the global state S together with its offspring

should be discarded.

Repeat step (2) through (3) until all nodes are traversed.

3.1.2. The growing process
The growing process is used to expand the pruned graph,

and thus derive the reachability graph. The pruned graph is

not the reachability graph for the Timed CFSM yet, because
two global states containing the same local states and the

same channel messages could generate different successors
under different timing sequences. The growing process
identifies the condition and expands the weighted reach-

ability graph when necessary. Fig. 7 shows the scenario

involving two processes, Pl and P2, which run with periods
100 and 150, respectively. Fig. 7(a) and (b) show the Timed
CFSMs of Pl and P2. Fig. 7(c) shows the partial reachability

graph with unreachable states marked gray. The dash-line
block in Fig. 7(c) contains the weighted reachability graph

derived from the non-timed CFSM, and the other part of Fig.
7(c) is what is newly expanded. The execution of the system
is described as follows. The initial global state is (0,O). After
100 time units, Pl goes to state 1 and back to state 0 in-
stantaneously. Again the global state is (0,O). However this

time the state (0,O) is different from the initial global state,
though both have the same local states. We observe that P2

is able to make a transition to state 1 after 50 time units,
which is not enabled in the initial global state. In fact, Pl
and P2 will run periodically every 300 time units. Therefore,
after 300 time units, the system is in a state equivalent to the
initial global state. We state the algorithm for the growing
process as follows:

466 S.-P. Shieh, J.-N. ChedComputer Communications 21 (1998) Ml-469

Fig. 8. The weighted reachability graph.

Traverse the graph width-first. Start from the root; mark
it as expanded.
If the currently traversed global state S contains the same
local states and channel messages with some expanded
state S’, we use the following rules to identify their
equivalence. Let S be (sI,s2,.sJ, and the set of
successors SUCC be (S r&.. . .,S k}, resulting from tran-
sitions t I,t2 ,. . .,tk, respectively. Let SUCC’ be the set of
successors of S’, which is equal to SUCC. For each state
si in S, find the trigger node for S corresponding to sir say
St;. At the same time, for si in S’, find the trigger node,
say Sti. For each successor Sj from S, and the corre-
sponding successor Sj’ from S’.

If the conditions w(St,Sj) = W(Sti’rSj’) and
w(S’,Sti) = W(Sj’,Sti’) hold, then S is equivalent to S’;
the subgraph generated from S’ is isomorphic to the
subgraph generated from S. Under such condition,
discard S’ and go to step (4). Or if the following two
conditions hold, S is also equivalent to S’.
If 1 is the largest lower bound for all ti values then the
conditions w(Sti,Sj) 2 1 and w(Sti’,Sj’) 2 1 hold.
If u is the smallest upper bound for all ti values, then the
conditions w(Sti,Sj) < u and W(Sfi’, Sj’) < u hold.When
these two conditions hold, all transitions from S and S’
to their successors can be enabled and all deadlines can
be met. In this case, all successors can be reached, and
therefore S is equivalent to S’.

3. Otherwise, S is different from S’. We should expand the
subgraph from S by copying the subgraph from S’.

4. Repeat (2) through (3) until all nodes are traversed.

After applying the pruning and growing processes, the
resulting graph omitting weighted edges is the reachability
graph of the Timed CFSM. Fig. 8 shows the weighted reach-
ability graph, in which the gray nodes represent unreachable
global states.

3.2. The proposed algorithm for reachability graph
construction

With the pruning and growing processes, we have devel-
oped an algorithm for constructing the reachability graph
from a Timed CFSM. The algorithm is explained as follows:

Construct SO the initial global state. Designate So as an
unexpanded node.
Choose an unexpanded node S. Mark it as expanded. Let
SUCC be the set of successors {S i,S2,. . .,Sk} Add the
weighted edges. Use the pruning process to discard
unreachable successors in SUCC.
For each Si remaining in SUCC, if it is equivalent to an
expanded global state S’, add an edge from S to S’; else
add an edge from S to Si, mark Si unexpanded.
Repeat step (2) through (3) until there are no unexpanded
nodes left.

S.-P. Shieh, J.-N. ChenKomputer Communications 21 (1998) 460-469 467

(4 (b) (c> (4
Fig. 9. The four candidates of the shortest path from S, to S,.

The reachability graph constructed from the algorithm is

proved to be finite. The proof is as follows:Proof: In the

growing process, we have identified the conditions for two
global states to be equivalent. All the equivalent global

states could be classified into an equivalent class. If we

prove the number of equivalent classes is finite, we can
assert that the construction of the reachability graph can

be terminated. We state the proof in three steps:

1. Partition the nodes of the reachability graph by their
local states and channel messages. The nodes of a parti-
tion have the same local states and channel messages.

2. For each node S, refine the partition as follows:

(A) If the deadlines for all transitions of S’s local states
are infinite, then we can divide the nodes into classes 0

through r, where r is the largest ready time among all
transitions of S’s local states. We classify all S’s in the

partition according to w(S’,S), where S’ is the trigger
node for S. A node S belongs to class i if w(S’,S) is

equal to i and less than r. Otherwise, S belongs to class

r. Thus, there are r + 1 classes in total.
(B) if the smallest deadline for S’s local state transitions
is finite, say d, then for each successor S’, classify the

nodes into class 0 through d + 1, according to w(S,S’).
The partition is further refined according to w(S’,S). If
the deadline for the transition to S’ is infinite, then

w(S’,S) is negative infinite. Alternatively, if the dead-
line is finite, say d’, then w(S’,S) is bounded to the sum

of the two deadlines d + d’. Therefore, there are a finite
number of equivalent classes.

3. Each node of the reachability graph must belong to a

certain equivalent class, as described in step (2). Thus,

the construction of the reachability graph can be termi-
nated.

In the next section, we will discuss the space requirement
of the algorithm.

3.3. Time and space requirements of the algorithm

Two basic steps of our algorithm are the assignment of
weighted edges and the calculation of weights of paths. We

will discuss the time requirement of two basic steps.

Assume the currently traversed node is S, the executable
transitions from S are t ,,t2 ,. . .,tk with corresponding source

local states s r,s2 sk and resulting successors SI,S2 Sk.

To assign weighted edges we have to backtrack the graph to
find the trigger nodes St; for S corresponding to s ;. As a

result, the time complexity of the backtracking is linearly

proportional to the length of the path from St; to Si. On the

other hand, to calculate w(Si,Sj), we have to find the shortest
path from Si to Sj. There are four candidates for the shortest
path shown in Fig. 9: (a) S,,S,Sj, (b) S;,S)...) Stj,Sj, (c) S;,St

; ,...) S,Sj and (d) S,St,)..., Stj,SF The time complexity of the
calculation of w(Si,Sj) is linearly proportional to the length

of the path from Si to Sj. In the worst case, if the trigger node
for S corresponding to Si is the root R, we have to backtrack

all nodes along the path from S to R. Again, in the worst
case, the path length can be equal to the state space. How-

ever, in general, the trigger nodes for S are not far from S.
In the aspect of space complexity, the analysis of reach-

ability suffers from the state space explosion problem.
Assume that there are, n processes in the Timed CFSM,
each global state will have n states and n2 communication

channels, and the average number of states of each process
is 1, then the space requirement is (n.s + n2.m)J” where s

and m are space requirements for keeping a state and a
channel, respectively. In addition, the growing process

will speed up the explosion of space. As a result, we have
to reduce the state space during the construction of the
reachability graph. A possible solution is to construct only

partial graphs when we validate the Timed CFSM. In the
next section, we will discuss our solution based on the path

approach.

3.4. Space complexity reduction

Before we present our solution for space reduction, we
will describe the tree representation of a Timed CFSM in
Section 3.4.1 and then explain the path approach in Section
3.4.2.

3.4.1. Tree representation of timed CFSMs
The tree representation of a Timed CFSM is a collection

468 X-P. Shieh, J.-N. ChedComputer Communications 21 (1998) 460-469

MONITOR

-DOWNGATE [300,3001

CONTROLLER 10.-l 11.-l

Fig. 10. Tree representation of Timed CFSM.

of trees each of which represents a process in the Timed
CFSM. The root of a tree is the initial state of a process Pi
and we expand the tree recursively with the following
algorithm.

1. Start from the initial state Oi. Designate Oi as the root of
the tree.

2. Choose a branch node. Add all transitions from the cor-
responding state as edges, and all entering states as
nodes. If the newly expanded node has a terminal state
or is the same as some branch node on the path from root,
then it is a leaf, else it is a branch node.

3. Repeat (2) until all branch nodes expanded.

Fig. 10 shows the tree representation of the railroad cross-
ing control system in Section 2.5. A path for a process Pi is
defined as a path starting from the root and ending with a
leaf in the tree representation. For example, the only path in
the process MONITOR is 0- 1-2-3-O and two paths in the
process CONTROLLER are O-1-2-3-0 and O-l-2-3-1,
respectively.

3.4.2. The path approach
The path approach is to validate the Timed CFSM,

denoted as M, by constructing only partial graphs of the
reachability graph. A concurrent path set is a set whose
elements are paths p1,p2 ,..., pn in processes P,,P* ,..., P,
respectively. A concurrent path set could be viewed as a
new Timed CFSM, M’, in which each path represents
a process. Therefore we could apply the algorithm in

Sender Receiver

Section 3.2 to construct the reachability graph of M’
which is a partial graph of the reachability graph of M.
During the construction of the reachability graph, if M’
enters a state that has no successors, the concurrent path
set is illegal. A state does not have successors under the
following conditions: (1) a process in the concurrent path
set sends a message while the receiving processes is not in
the concurrent path set. Under this condition, the concurrent
path set is invalid; (2) a deadlock occurs within the concur-
rent path set. With this idea in mind, we revise our algorithm
as follows. (Assume the tree representation has been
constructed.)

1.

2.

3.

4.

Choose a concurrent path set, start from the initial global
state So Mark it as unexpanded.
Choose an unexpanded node S. If an unexpanded node is
not found, store the reachability graph in the secondary
storage and go to step (5). Let SUCC be the set of
successors [S r,Sz ,. . .,Sk). If SUCC is null, go to step
(4). Add the weighted edges and discard unreachable
successors in SUCC.
For each Si remaining in SUCC, if it is equivalent to an
expanded global state S’, add an edge from S to S’.
Otherwise, add an edge from S to Si, mark Si unex-
panded, and mark S expanded. Go to step (2).
If there is any message left in channels, the concurrent
set is invalid. On the other hand, if there is no message
left in channels, we conclude that a deadlock has
occurred.

Sender-Receiver Channel Receiver-Sender Channel

Fig. 11. Timed CFSM for stop-and-wait protocol.

S.-P. Shieh, J.-N. CherdComputer Communications 21 (1998) 460-469 469

5. Repeat (1) through (3) until all concurrent path sets are
verified.

The space requirement of the revised algorithm would be
less than that of the original algorithm. Assume the average
length of each path is I’, which is shorter than 1. Each time
that a concurrent path set is validated, the number of
possible global states is (1’)“. Furthermore, the capacity of
communication channels needs to be one unit only. The
memory requirement of the algorithm is (n.s + n’).(V)“,
where n is the number of the processes, and s is the space
requirement for keeping a state. Although the space require-
ment of the revised algorithm is also exponential, the base
component is smaller than that in the previous algorithm. On
the other hand, the time complexity would be IIni times
compared to the original algorithm. If the removal of illegal
concurrent path sets is performed in advance, the time com-
plexity can be further reduced.

3.5. Applications of timed CFSM

Many communication protocols, in which timing
constraints are required to be bundled with original func-
tionality, can be modeled by Timed CFSM. For example,
the stop-and-wait protocol presented in Ref. [9] can be
modeled as the Timed CFSM in Fig. 11. There are four
entities in the Timed CFSM: a sender, a receiver, a
sender-receiver channel, and a receiver-sender channel.
We can identify both unreachable and equivalent global
states during the construction of the reachability graph.
Other flow control protocols, such as X-on/X-off, Ping-
Pong, and Window protocols, can also apply reachability
analysis to verify their timing property in a similar way.

4. Conclusions

In this paper we propose the Timed CFSM, which can
serve as a model for specifying and verifying time-critical
systems. Transitions in Timed CFSM are bounded by a time
interval, defined by [min,max], where min is the ready time
and max is the deadline. Given a specification formally
defined by a Timed CFSM, we are able to verify its timing
properties by constructing the reachability graph for the
Timed CFSM. The construction of the reachability graph
from Timed CFSM is achieved by the pruning and growing
processes. To cope with the space explosion problem, we
propose a space complexity reduction algorithm to meet the
space constraint of the verification environment.

Acknowledgements

This work was supported in part by the National Science
Council of Taiwan. under contract NSC 85-2213-E-009-032.

References

[I I AC. Shaw, Reasoning about time in higher-level language software,

IEEE Trans. Software Eng. 15 (1989) 875-889.

[2] A. Gabrielian, M.K. Franklin, Multilevel specification of real-time

systems, Comm. of ACM, May 1991, pp. 5 l-60.

[3] A.C. Shaw, Communicating real-time state machines, IEEE Trans.

Software Eng. 18 (Sept.) (1992) 805-816.

[4] A.F. Ates, M. Bilgic, S. Saito, B. Sarikaya, Using timed CSP for

specification, verification and simulation of multimedia synchroniza-

tion, IEEE J. Selected Areas in Communications 14 (Jan.) (1996)

126-137.

[5] A. Lakas, G.S. Blair, A. Chetwynd, Specification and verification of

real-time properties using LOTOS and SQTL, in: Proceedings of

IWSSD-8, IEEE, 1996.

[6] B. Berthomieu, M. Diaz, Modeling and verification of time dependent

systems using Time Petri Nets, IEEE Trans. Software Eng. I7 (Mar.)

(1991) 259-273y.

[7] C. Hoare, An axiomatic basis for computer programming, Corn!

ACM IO (12 Oct.) (1969) 576-580.

[8] C. Hoare, Communicating sequential processes, Comm. ACM 8 (2

Aug.) (I 978) 666-677.

[9] C.M. Huang, S.W. Lee, J.M. Hsu, Probabilistic timed protocol verifi-

cation for the extended state transition model, Proceedings of Inter-

national Conference on Parallel and Distributed Systems (1994),

Hsinchu Taiwan, pp. 432-437.

[IO] D. Brand, P. Zafiropulo, On communicating finite-state machines, J.

ACM 30 (April) (1983) 323-342.

[1 I] D. Stuart, Implementing a verifier for real-time systems, in: Proceed-

ings of the I lth Real-Time Systems Symposium, Lake Buena Vista,

Florida, (I 990), pp. 62-7 I.

[121 F. Jahanian, A. Mok, Safety analysis of timing properties in real-time

system, IEEE Trans. Software Eng. SE-12 (Sept.) (1986) 890-904.

[131 F. Jahanian, D. Stuart, Method for verifying properties of modechart

specifications, in: Proceedings of the Ninth Real-Time Systems Sym-

posium, Huntsville, Alabama, (1988). pp. 12-2 1.

[14] C. Ghezzi, D. Mandrioli, S. Morasca, M. Pezz’e, Unified high-level

Petri net formalism for time-critical systems, IEEE Trans. Software

Eng. I7 (Feb.) (1991) 160-172.

[l5] J.S. Ostroff, W.M. Wonham, Modeling, specifying, and verifying

real-time embedded computer systems, in: Proceedings of the Eighth

Real-Time Systems Symposium, San Jose, California (1987), pp.

124-132.

[161 M. Felder, D. Mandrioli, A. Morzenti, Proving properties of real-time

systems through logical specifications and Petri net models, IEEE

Trans. Software Eng. 20 (Feb.) (1994) 127- 141.

[I71 N.G. Leveson, J.L. Stolzy, Safety analysis using Petri nets, IEEE

Trans. Software Eng. SE-13 (Mar.) (1987) 386-397.

[I81 T. Litter, A. Ghafoor, Synchronization and storage models for multi-

media objects, IEEE J. Selected Areas in Communications 8 (Apr.)

(1990) 413-427.

